Kernel polynomials from L-orthogonal polynomials

Detalhes bibliográficos
Autor(a) principal: Felix, H. M. [UNESP]
Data de Publicação: 2011
Outros Autores: Sri Ranga, A. [UNESP], Veronese, D. O.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.apnum.2010.12.006
http://hdl.handle.net/11449/72397
Resumo: A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.
id UNSP_0017ad92077f08adba95e19087021b4e
oai_identifier_str oai:repositorio.unesp.br:11449/72397
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Kernel polynomials from L-orthogonal polynomialsEigenvalue problemsKernel polynomialsOrthogonal Laurent polynomialsQuadrature rulesEigenvalue problemL-orthogonal polynomialsNumerical evaluationsOrthogonal Laurent polynomialEigenvalues and eigenfunctionsOrthogonal functionsPolynomialsA positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.Departamento de Ciências de Computação e Estatística IBILCE Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SPFundação Universidade Federal Do Tocantins, 77330-000 Arraias, TODepartamento de Ciências de Computação e Estatística IBILCE Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SPUniversidade Estadual Paulista (Unesp)Universidade Federal do Tocantins (UFT)Felix, H. M. [UNESP]Sri Ranga, A. [UNESP]Veronese, D. O.2014-05-27T11:25:51Z2014-05-27T11:25:51Z2011-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article651-665application/pdfhttp://dx.doi.org/10.1016/j.apnum.2010.12.006Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.0168-9274http://hdl.handle.net/11449/7239710.1016/j.apnum.2010.12.0062-s2.0-797515258702-s2.0-79751525870.pdf3587123309745610Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Numerical Mathematics1.2630,930info:eu-repo/semantics/openAccess2024-01-24T06:31:44Zoai:repositorio.unesp.br:11449/72397Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:50:15.536803Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Kernel polynomials from L-orthogonal polynomials
title Kernel polynomials from L-orthogonal polynomials
spellingShingle Kernel polynomials from L-orthogonal polynomials
Felix, H. M. [UNESP]
Eigenvalue problems
Kernel polynomials
Orthogonal Laurent polynomials
Quadrature rules
Eigenvalue problem
L-orthogonal polynomials
Numerical evaluations
Orthogonal Laurent polynomial
Eigenvalues and eigenfunctions
Orthogonal functions
Polynomials
title_short Kernel polynomials from L-orthogonal polynomials
title_full Kernel polynomials from L-orthogonal polynomials
title_fullStr Kernel polynomials from L-orthogonal polynomials
title_full_unstemmed Kernel polynomials from L-orthogonal polynomials
title_sort Kernel polynomials from L-orthogonal polynomials
author Felix, H. M. [UNESP]
author_facet Felix, H. M. [UNESP]
Sri Ranga, A. [UNESP]
Veronese, D. O.
author_role author
author2 Sri Ranga, A. [UNESP]
Veronese, D. O.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal do Tocantins (UFT)
dc.contributor.author.fl_str_mv Felix, H. M. [UNESP]
Sri Ranga, A. [UNESP]
Veronese, D. O.
dc.subject.por.fl_str_mv Eigenvalue problems
Kernel polynomials
Orthogonal Laurent polynomials
Quadrature rules
Eigenvalue problem
L-orthogonal polynomials
Numerical evaluations
Orthogonal Laurent polynomial
Eigenvalues and eigenfunctions
Orthogonal functions
Polynomials
topic Eigenvalue problems
Kernel polynomials
Orthogonal Laurent polynomials
Quadrature rules
Eigenvalue problem
L-orthogonal polynomials
Numerical evaluations
Orthogonal Laurent polynomial
Eigenvalues and eigenfunctions
Orthogonal functions
Polynomials
description A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.
publishDate 2011
dc.date.none.fl_str_mv 2011-05-01
2014-05-27T11:25:51Z
2014-05-27T11:25:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.apnum.2010.12.006
Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.
0168-9274
http://hdl.handle.net/11449/72397
10.1016/j.apnum.2010.12.006
2-s2.0-79751525870
2-s2.0-79751525870.pdf
3587123309745610
url http://dx.doi.org/10.1016/j.apnum.2010.12.006
http://hdl.handle.net/11449/72397
identifier_str_mv Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.
0168-9274
10.1016/j.apnum.2010.12.006
2-s2.0-79751525870
2-s2.0-79751525870.pdf
3587123309745610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Numerical Mathematics
1.263
0,930
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 651-665
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129557445738496