Kernel polynomials from L-orthogonal polynomials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.apnum.2010.12.006 http://hdl.handle.net/11449/72397 |
Resumo: | A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved. |
id |
UNSP_0017ad92077f08adba95e19087021b4e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/72397 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Kernel polynomials from L-orthogonal polynomialsEigenvalue problemsKernel polynomialsOrthogonal Laurent polynomialsQuadrature rulesEigenvalue problemL-orthogonal polynomialsNumerical evaluationsOrthogonal Laurent polynomialEigenvalues and eigenfunctionsOrthogonal functionsPolynomialsA positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.Departamento de Ciências de Computação e Estatística IBILCE Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SPFundação Universidade Federal Do Tocantins, 77330-000 Arraias, TODepartamento de Ciências de Computação e Estatística IBILCE Universidade Estadual Paulista (UNESP), 15054-000 São José do Rio Preto, SPUniversidade Estadual Paulista (Unesp)Universidade Federal do Tocantins (UFT)Felix, H. M. [UNESP]Sri Ranga, A. [UNESP]Veronese, D. O.2014-05-27T11:25:51Z2014-05-27T11:25:51Z2011-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article651-665application/pdfhttp://dx.doi.org/10.1016/j.apnum.2010.12.006Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.0168-9274http://hdl.handle.net/11449/7239710.1016/j.apnum.2010.12.0062-s2.0-797515258702-s2.0-79751525870.pdf3587123309745610Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Numerical Mathematics1.2630,930info:eu-repo/semantics/openAccess2024-01-24T06:31:44Zoai:repositorio.unesp.br:11449/72397Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T23:50:15.536803Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Kernel polynomials from L-orthogonal polynomials |
title |
Kernel polynomials from L-orthogonal polynomials |
spellingShingle |
Kernel polynomials from L-orthogonal polynomials Felix, H. M. [UNESP] Eigenvalue problems Kernel polynomials Orthogonal Laurent polynomials Quadrature rules Eigenvalue problem L-orthogonal polynomials Numerical evaluations Orthogonal Laurent polynomial Eigenvalues and eigenfunctions Orthogonal functions Polynomials |
title_short |
Kernel polynomials from L-orthogonal polynomials |
title_full |
Kernel polynomials from L-orthogonal polynomials |
title_fullStr |
Kernel polynomials from L-orthogonal polynomials |
title_full_unstemmed |
Kernel polynomials from L-orthogonal polynomials |
title_sort |
Kernel polynomials from L-orthogonal polynomials |
author |
Felix, H. M. [UNESP] |
author_facet |
Felix, H. M. [UNESP] Sri Ranga, A. [UNESP] Veronese, D. O. |
author_role |
author |
author2 |
Sri Ranga, A. [UNESP] Veronese, D. O. |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Federal do Tocantins (UFT) |
dc.contributor.author.fl_str_mv |
Felix, H. M. [UNESP] Sri Ranga, A. [UNESP] Veronese, D. O. |
dc.subject.por.fl_str_mv |
Eigenvalue problems Kernel polynomials Orthogonal Laurent polynomials Quadrature rules Eigenvalue problem L-orthogonal polynomials Numerical evaluations Orthogonal Laurent polynomial Eigenvalues and eigenfunctions Orthogonal functions Polynomials |
topic |
Eigenvalue problems Kernel polynomials Orthogonal Laurent polynomials Quadrature rules Eigenvalue problem L-orthogonal polynomials Numerical evaluations Orthogonal Laurent polynomial Eigenvalues and eigenfunctions Orthogonal functions Polynomials |
description |
A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-05-01 2014-05-27T11:25:51Z 2014-05-27T11:25:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.apnum.2010.12.006 Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011. 0168-9274 http://hdl.handle.net/11449/72397 10.1016/j.apnum.2010.12.006 2-s2.0-79751525870 2-s2.0-79751525870.pdf 3587123309745610 |
url |
http://dx.doi.org/10.1016/j.apnum.2010.12.006 http://hdl.handle.net/11449/72397 |
identifier_str_mv |
Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011. 0168-9274 10.1016/j.apnum.2010.12.006 2-s2.0-79751525870 2-s2.0-79751525870.pdf 3587123309745610 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Numerical Mathematics 1.263 0,930 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
651-665 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129557445738496 |