Predicting customer churn using Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/160911 |
Resumo: | Dias, J. P. R., & António, N. (2023). Predicting customer churn using Machine Learning: A case study in the software industry. Journal of Marketing Analytics. https://doi.org/10.1057/s41270-023-00269-9 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS |
id |
RCAP_15ac583abd2e6282b6f5bbdadafd6e95 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/160911 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Predicting customer churn using Machine LearningA case study in the software industryData MiningCustomer Churn PredictionMachine LearningSupervised LearningSaaSEconomics, Econometrics and Finance (miscellaneous)Strategy and ManagementStatistics, Probability and UncertaintyMarketingSDG 8 - Decent Work and Economic GrowthDias, J. P. R., & António, N. (2023). Predicting customer churn using Machine Learning: A case study in the software industry. Journal of Marketing Analytics. https://doi.org/10.1057/s41270-023-00269-9 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMSCustomer churn can be defined as the phenomenon of customers who discontinue their relationship with a company. This problem is transversal to many industries, including the software industry. This study uses Machine Learning to build a predictive model to identify potential churners in a Portuguese software house. Six popular Machine Learning models: Random Forest, AdaBoost, Gradient Boosting Machine, Multilayer Perceptron Classifier, XGBoost, and Logistic Regression, were developed to assess which one would have a better performance. The experimental results show that boosting techniques such as XGBoost present the best predictive performance. The XGBoost model presents a Recall of 0.85 and a ROC AUC of 0.86. Additionally to the model performance, the study of the model's feature importance revealed that some factors, such as the time to solve a support ticket, the type of application, the license age, and the number of incidents, significantly influence customer churn. These insights can help the software industry key drivers of churn and prioritize retention efforts accordingly.NOVA Information Management School (NOVA IMS)Information Management Research Center (MagIC) - NOVA Information Management SchoolRUNDias, João Pedro RolimAntónio, Nuno2023-12-022024-12-02T00:00:00Z2023-12-02T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article18application/pdfhttp://hdl.handle.net/10362/160911eng2050-3318PURE: 74998880https://doi.org/10.1057/s41270-023-00269-9info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T18:16:25Zoai:run.unl.pt:10362/160911Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T18:16:25Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Predicting customer churn using Machine Learning A case study in the software industry |
title |
Predicting customer churn using Machine Learning |
spellingShingle |
Predicting customer churn using Machine Learning Dias, João Pedro Rolim Data Mining Customer Churn Prediction Machine Learning Supervised Learning SaaS Economics, Econometrics and Finance (miscellaneous) Strategy and Management Statistics, Probability and Uncertainty Marketing SDG 8 - Decent Work and Economic Growth |
title_short |
Predicting customer churn using Machine Learning |
title_full |
Predicting customer churn using Machine Learning |
title_fullStr |
Predicting customer churn using Machine Learning |
title_full_unstemmed |
Predicting customer churn using Machine Learning |
title_sort |
Predicting customer churn using Machine Learning |
author |
Dias, João Pedro Rolim |
author_facet |
Dias, João Pedro Rolim António, Nuno |
author_role |
author |
author2 |
António, Nuno |
author2_role |
author |
dc.contributor.none.fl_str_mv |
NOVA Information Management School (NOVA IMS) Information Management Research Center (MagIC) - NOVA Information Management School RUN |
dc.contributor.author.fl_str_mv |
Dias, João Pedro Rolim António, Nuno |
dc.subject.por.fl_str_mv |
Data Mining Customer Churn Prediction Machine Learning Supervised Learning SaaS Economics, Econometrics and Finance (miscellaneous) Strategy and Management Statistics, Probability and Uncertainty Marketing SDG 8 - Decent Work and Economic Growth |
topic |
Data Mining Customer Churn Prediction Machine Learning Supervised Learning SaaS Economics, Econometrics and Finance (miscellaneous) Strategy and Management Statistics, Probability and Uncertainty Marketing SDG 8 - Decent Work and Economic Growth |
description |
Dias, J. P. R., & António, N. (2023). Predicting customer churn using Machine Learning: A case study in the software industry. Journal of Marketing Analytics. https://doi.org/10.1057/s41270-023-00269-9 --- This work was supported by national funds through FCT (Fundação para a Ciência e a Tecnologia) under the project - UIDB/04152/2020 - Centro de Investigação em Gestão de Informação (MagIC)/NOVA IMS |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-02 2023-12-02T00:00:00Z 2024-12-02T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/160911 |
url |
http://hdl.handle.net/10362/160911 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2050-3318 PURE: 74998880 https://doi.org/10.1057/s41270-023-00269-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
18 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545972964655104 |