Customer churn prediction in the banking industry
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/149182 |
Resumo: | Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
id |
RCAP_68281cb967f30206cdf504054f44b322 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/149182 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Customer churn prediction in the banking industryCustomer churn predictionBankingMachine learningSupervised learningInternship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business AnalyticsThe objective of this project is to create a predictive model that will decrease customer churn in a Portuguese bank. That is, we intend to identify customers who could be considering closing their checking accounts. For the bank to be able to take the necessary corrective measures, the model also aims to determine the characteristics of the customers that decided to leave. This model will make use of customer data that the organization already has to hand. Data pre-processing with data cleansing, transformation, and reduction was the initial stage of the analysis. The dataset is imbalanced, meaning that we have a small number of positive outcomes or churners; thus, under-sampling and other approaches were employed to address this issue. The predictive models used are logistic regression, support vector machine, decision trees and artificial neural networks, and for each, parameter tuning was also conducted. In conclusion, regarding the customer churn prediction, the recommended model is a support vector machine with a precision of 0.84 and an AUROC of 0.905. These findings will contribute to the customer lifetime value, helping the bank better understand their customers' behavior and allow them to draw strategies accordingly with the information obtained.Jesus, Frederico Miguel Campos Cruz Ribeiro deRUNCunha, Soraia Sofia Santiago da2023-02-14T18:27:23Z2023-01-252023-01-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/149182TID:203227581enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:30:59Zoai:run.unl.pt:10362/149182Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:53:39.168583Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Customer churn prediction in the banking industry |
title |
Customer churn prediction in the banking industry |
spellingShingle |
Customer churn prediction in the banking industry Cunha, Soraia Sofia Santiago da Customer churn prediction Banking Machine learning Supervised learning |
title_short |
Customer churn prediction in the banking industry |
title_full |
Customer churn prediction in the banking industry |
title_fullStr |
Customer churn prediction in the banking industry |
title_full_unstemmed |
Customer churn prediction in the banking industry |
title_sort |
Customer churn prediction in the banking industry |
author |
Cunha, Soraia Sofia Santiago da |
author_facet |
Cunha, Soraia Sofia Santiago da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Jesus, Frederico Miguel Campos Cruz Ribeiro de RUN |
dc.contributor.author.fl_str_mv |
Cunha, Soraia Sofia Santiago da |
dc.subject.por.fl_str_mv |
Customer churn prediction Banking Machine learning Supervised learning |
topic |
Customer churn prediction Banking Machine learning Supervised learning |
description |
Internship Report presented as the partial requirement for obtaining a Master's degree in Data Science and Advanced Analytics, specialization in Business Analytics |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02-14T18:27:23Z 2023-01-25 2023-01-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/149182 TID:203227581 |
url |
http://hdl.handle.net/10362/149182 |
identifier_str_mv |
TID:203227581 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138126661156864 |