Modeling of an Autonomous Underwater Vehicle

Detalhes bibliográficos
Autor(a) principal: Bentes, Cristiano Alves
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/6359
Resumo: Autonomous Underwater Vehicles (AUV) have multiple applications for military, commercial and research purposes. The main advantage of this technology is its independence. Since these vehicles operate autonomously, the need for a dedicated support vessel and human supervision is dismissed. However, the autonomous nature of AUVs also presents a complex challenge for the guidance, navigation and control system(s). The design of motion controllers for AUVs is model-based i.e. a dynamic model is used for the design of the control system. The dynamic model can also be used for simulation and performance analysis. In this context, the purpose of this thesis is to provide a dynamic model for a double-body research AUV being developed at CEiiA. This model is to be subsequently used for the design of the control system. Since the purpose is the design of the control system and, in the scope of providing multiple design approaches, the appropriate lateral and longitudinal subsystems are devised. These subsystems are subsequently validated by comparing simulation results for the subsystems with simulation results for the complete model. The AUV is modeled using Fossen’s dynamic model. The model is divided into kinematics and kinetics. Kinematics addresses the geometrical aspects of motion. For this purpose, both Euler angles and quaternions are used. Kinetics focuses on the relationship between motion and force. This model identifies four distinct forces that act on the underwater vehicle: rigid-body forces; hydrostatic forces; hydrosynamic damping (or drag) and added-mass. The estimation of model parameters is performed using analytical and computational methods. A detailed 3D CAD model, developed by CEiiA, proved helpful for estimating mass and inertia parameters as well as hydrostatic forces. Hydrodynamic damping estimation was performed by adapting CFD analysis, also developed by CEiiA, to satisfy model parameters. Added mass parameters were estimated using proven analytical methods. Due to limitations inherent to current modeling methods, simplifications were unavoidable. These, when analyzed considering the requirements of typical control systems, did not pose an impediment to the use of the dynamic model for this purpose. Regarding the dynamics of this AUV, the hydrodynamic analysis suggests that this AUV is unstable in the presence of angles of attack and side-slip. However the AUV’s motors should be capable of controlling such instabilities.
id RCAP_15b5a5ccf080e3c5c8664401238aff41
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/6359
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling of an Autonomous Underwater VehicleDinâmicaDuplo-CorpoEstimaçãoLateralLongitudinalModelo de FossenSimulaçãoVeículo Subaquático AutónomoDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasAutonomous Underwater Vehicles (AUV) have multiple applications for military, commercial and research purposes. The main advantage of this technology is its independence. Since these vehicles operate autonomously, the need for a dedicated support vessel and human supervision is dismissed. However, the autonomous nature of AUVs also presents a complex challenge for the guidance, navigation and control system(s). The design of motion controllers for AUVs is model-based i.e. a dynamic model is used for the design of the control system. The dynamic model can also be used for simulation and performance analysis. In this context, the purpose of this thesis is to provide a dynamic model for a double-body research AUV being developed at CEiiA. This model is to be subsequently used for the design of the control system. Since the purpose is the design of the control system and, in the scope of providing multiple design approaches, the appropriate lateral and longitudinal subsystems are devised. These subsystems are subsequently validated by comparing simulation results for the subsystems with simulation results for the complete model. The AUV is modeled using Fossen’s dynamic model. The model is divided into kinematics and kinetics. Kinematics addresses the geometrical aspects of motion. For this purpose, both Euler angles and quaternions are used. Kinetics focuses on the relationship between motion and force. This model identifies four distinct forces that act on the underwater vehicle: rigid-body forces; hydrostatic forces; hydrosynamic damping (or drag) and added-mass. The estimation of model parameters is performed using analytical and computational methods. A detailed 3D CAD model, developed by CEiiA, proved helpful for estimating mass and inertia parameters as well as hydrostatic forces. Hydrodynamic damping estimation was performed by adapting CFD analysis, also developed by CEiiA, to satisfy model parameters. Added mass parameters were estimated using proven analytical methods. Due to limitations inherent to current modeling methods, simplifications were unavoidable. These, when analyzed considering the requirements of typical control systems, did not pose an impediment to the use of the dynamic model for this purpose. Regarding the dynamics of this AUV, the hydrodynamic analysis suggests that this AUV is unstable in the presence of angles of attack and side-slip. However the AUV’s motors should be capable of controlling such instabilities.Os veículos subaquáticos autónomos (Autonomous Underwater Vehicles – AUV’s) têm múltiplas aplicações militares, comerciais e para investigação científica. A grande vantagem destes veículos advém da sua independência, sendo que operam sem a necessidade de supervisão humana. No entanto esta capacidade implica que os sistemas de navegação, guia e controlo sejam completamente responsáveis pelo governo do veículo. O sistema de controlo destes veículos é tipicamente projetado tendo como base um modelo dinâmico do mesmo. Este modelo pode ser também usado para simulação e análise de desempenho. O propósito deste trabalho é desenvolver um modelo dinâmico para um AUV de investigação de duplo-corpo, a ser desenvolvido no CEiiA. Dado que o objetivo principal do modelo é projetar controladores e, de modo a fornecer várias abordagens para o efeito, os respetivos modelos (subsistemas) lateral e longitudinal são deduzidos. Estes modelos são posteriormente validados através da comparação de resultados de simulação para os subsistemas com os resultados de simulação para o modelo completo. A modelação deste veículo é efetuada usando o modelo dinâmico de Fossen. Este modelo pode ser dividido em cinemática e cinética. Cinemática aborda os aspetos geométricos do movimento. As equações de cinemática são fornecidas tanto para ângulos de Euler como para quaterniões. As equações de cinética centram-se na relação entre movimento e força. O modelo de Fossen identifica quatro forças distintas que influenciam a dinâmica dos veículos subaquáticos: forças de corpo rígido; forças hidrostáticas; amortecimento (atrito) hidrodinâmico e added mass. Estas forças são modeladas através de métodos analíticos e computacionais. O modelo CAD do veículo, desenvolvido pelo CEiiA, foi usado para estimar os parâmetros de massa e inércia, bem como forças hidrostáticas. O amortecimento hidrodinâmico foi estimado através da adaptação de análises CFD, também efetuadas pelo CEiiA, para satisfazer os parâmetros do modelo. Os parâmetros added mass foram estimados usando métodos analíticos comprovados. Devido a limitações inerentes aos métodos de modelação atuais, simplificações foram inevitáveis. As mesmas, quando analisadas tendo em conta os requisitos de sistemas de controlo típicos não provaram ser impeditivas da aplicação deste modelo para o desenvolvimento dos mesmos. No que diz respeito à dinâmica deste AUV, a análise hidrodinâmica sugere que este AUV é instável quando na presença de ângulos de ataque e derrapagem. No entanto os motores do AUV deverão ser capazes de corrigir tais instabilidades.Bousson, KouamanauBibliorumBentes, Cristiano Alves2018-11-13T16:06:13Z2016-11-172016-10-102016-11-17T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/6359TID:201772450enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:44:48Zoai:ubibliorum.ubi.pt:10400.6/6359Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:06.182774Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling of an Autonomous Underwater Vehicle
title Modeling of an Autonomous Underwater Vehicle
spellingShingle Modeling of an Autonomous Underwater Vehicle
Bentes, Cristiano Alves
Dinâmica
Duplo-Corpo
Estimação
Lateral
Longitudinal
Modelo de Fossen
Simulação
Veículo Subaquático Autónomo
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Modeling of an Autonomous Underwater Vehicle
title_full Modeling of an Autonomous Underwater Vehicle
title_fullStr Modeling of an Autonomous Underwater Vehicle
title_full_unstemmed Modeling of an Autonomous Underwater Vehicle
title_sort Modeling of an Autonomous Underwater Vehicle
author Bentes, Cristiano Alves
author_facet Bentes, Cristiano Alves
author_role author
dc.contributor.none.fl_str_mv Bousson, Kouamana
uBibliorum
dc.contributor.author.fl_str_mv Bentes, Cristiano Alves
dc.subject.por.fl_str_mv Dinâmica
Duplo-Corpo
Estimação
Lateral
Longitudinal
Modelo de Fossen
Simulação
Veículo Subaquático Autónomo
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Dinâmica
Duplo-Corpo
Estimação
Lateral
Longitudinal
Modelo de Fossen
Simulação
Veículo Subaquático Autónomo
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Autonomous Underwater Vehicles (AUV) have multiple applications for military, commercial and research purposes. The main advantage of this technology is its independence. Since these vehicles operate autonomously, the need for a dedicated support vessel and human supervision is dismissed. However, the autonomous nature of AUVs also presents a complex challenge for the guidance, navigation and control system(s). The design of motion controllers for AUVs is model-based i.e. a dynamic model is used for the design of the control system. The dynamic model can also be used for simulation and performance analysis. In this context, the purpose of this thesis is to provide a dynamic model for a double-body research AUV being developed at CEiiA. This model is to be subsequently used for the design of the control system. Since the purpose is the design of the control system and, in the scope of providing multiple design approaches, the appropriate lateral and longitudinal subsystems are devised. These subsystems are subsequently validated by comparing simulation results for the subsystems with simulation results for the complete model. The AUV is modeled using Fossen’s dynamic model. The model is divided into kinematics and kinetics. Kinematics addresses the geometrical aspects of motion. For this purpose, both Euler angles and quaternions are used. Kinetics focuses on the relationship between motion and force. This model identifies four distinct forces that act on the underwater vehicle: rigid-body forces; hydrostatic forces; hydrosynamic damping (or drag) and added-mass. The estimation of model parameters is performed using analytical and computational methods. A detailed 3D CAD model, developed by CEiiA, proved helpful for estimating mass and inertia parameters as well as hydrostatic forces. Hydrodynamic damping estimation was performed by adapting CFD analysis, also developed by CEiiA, to satisfy model parameters. Added mass parameters were estimated using proven analytical methods. Due to limitations inherent to current modeling methods, simplifications were unavoidable. These, when analyzed considering the requirements of typical control systems, did not pose an impediment to the use of the dynamic model for this purpose. Regarding the dynamics of this AUV, the hydrodynamic analysis suggests that this AUV is unstable in the presence of angles of attack and side-slip. However the AUV’s motors should be capable of controlling such instabilities.
publishDate 2016
dc.date.none.fl_str_mv 2016-11-17
2016-10-10
2016-11-17T00:00:00Z
2018-11-13T16:06:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/6359
TID:201772450
url http://hdl.handle.net/10400.6/6359
identifier_str_mv TID:201772450
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136366667235328