The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro

Detalhes bibliográficos
Autor(a) principal: Marques, A. P.
Data de Publicação: 2005
Outros Autores: Reis, R. L., Hunt, J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20058
Resumo: Leukocyte adhesion to biomaterials has long been recognised as a key element to determine their inflammatory potential. Results regarding leukocyte adhesion and activation are contradictory in some aspects of the material’s effect in determining these events. It is clear that together with the wettability or hydrophilicity/hydrophobicity, the roughness of a substrate has a major effect on leukocyte adhesion. Both the chemical and physical properties of a material influence the adsorbed proteins layer which in turn determines the adhesion of cells. In this work polymorphonuclear (PMN) cells and a mixed population of monocytes/macrophages and lymphocytes (mononuclear cells) were cultured separately with a range of starch-based materials and composites with hydroxyapatite (HA). A combination of both reflected light microscopy and scanning electron microscopy (SEM) was used in order to study the leukocyte morphology. The quantification of the enzyme lactate dehydrogenase (LDH) was used to determine the number of viable cells adhered to the polymers. Cell adhesion and activation was characterised by immunocytochemistry based on the expression of several adhesion molecules, crucial in the progress of an inflammatory response. This work supports previous in vitro studies with PMN and monocytes/macrophages, which demonstrated that there are several properties of the materials that can influence and determine their biological response. From our study, monocytes/macrophages and lymphocytes adhere in similar amounts to more hydrophobic (SPCL) and to moderately hydrophilic (SEVA-C) surfaces and do not preferentially adhere to rougher substrates (SCA). Contrarily, more hydrophilic surfaces (SCA) induced higher PMN adhesion and lower activation. In addition, the hydroxyapatite reinforcement induces changes in cell behaviour for some materials but not for others. The observed response to starch-based biodegradable polymers was not significantly different from the control materials. Thus, the results reported herein indicate the low potential of the starch-based biodegradable polymers to induce inflammation especially the HA reinforced composite materials.
id RCAP_15dae4c87839056223f96636b6181851
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20058
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str
spelling The effect of starch-based biomaterials on leukocyte adhesion and activation in vitroScience & TechnologyLeukocyte adhesion to biomaterials has long been recognised as a key element to determine their inflammatory potential. Results regarding leukocyte adhesion and activation are contradictory in some aspects of the material’s effect in determining these events. It is clear that together with the wettability or hydrophilicity/hydrophobicity, the roughness of a substrate has a major effect on leukocyte adhesion. Both the chemical and physical properties of a material influence the adsorbed proteins layer which in turn determines the adhesion of cells. In this work polymorphonuclear (PMN) cells and a mixed population of monocytes/macrophages and lymphocytes (mononuclear cells) were cultured separately with a range of starch-based materials and composites with hydroxyapatite (HA). A combination of both reflected light microscopy and scanning electron microscopy (SEM) was used in order to study the leukocyte morphology. The quantification of the enzyme lactate dehydrogenase (LDH) was used to determine the number of viable cells adhered to the polymers. Cell adhesion and activation was characterised by immunocytochemistry based on the expression of several adhesion molecules, crucial in the progress of an inflammatory response. This work supports previous in vitro studies with PMN and monocytes/macrophages, which demonstrated that there are several properties of the materials that can influence and determine their biological response. From our study, monocytes/macrophages and lymphocytes adhere in similar amounts to more hydrophobic (SPCL) and to moderately hydrophilic (SEVA-C) surfaces and do not preferentially adhere to rougher substrates (SCA). Contrarily, more hydrophilic surfaces (SCA) induced higher PMN adhesion and lower activation. In addition, the hydroxyapatite reinforcement induces changes in cell behaviour for some materials but not for others. The observed response to starch-based biodegradable polymers was not significantly different from the control materials. Thus, the results reported herein indicate the low potential of the starch-based biodegradable polymers to induce inflammation especially the HA reinforced composite materials.SpringerUniversidade do MinhoMarques, A. P.Reis, R. L.Hunt, J. A.20052005-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20058eng0957–453010.1007/s10856-005-4757-916388384info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:13:50ZPortal AgregadorONG
dc.title.none.fl_str_mv The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
title The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
spellingShingle The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
Marques, A. P.
Science & Technology
title_short The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
title_full The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
title_fullStr The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
title_full_unstemmed The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
title_sort The effect of starch-based biomaterials on leukocyte adhesion and activation in vitro
author Marques, A. P.
author_facet Marques, A. P.
Reis, R. L.
Hunt, J. A.
author_role author
author2 Reis, R. L.
Hunt, J. A.
author2_role author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Marques, A. P.
Reis, R. L.
Hunt, J. A.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description Leukocyte adhesion to biomaterials has long been recognised as a key element to determine their inflammatory potential. Results regarding leukocyte adhesion and activation are contradictory in some aspects of the material’s effect in determining these events. It is clear that together with the wettability or hydrophilicity/hydrophobicity, the roughness of a substrate has a major effect on leukocyte adhesion. Both the chemical and physical properties of a material influence the adsorbed proteins layer which in turn determines the adhesion of cells. In this work polymorphonuclear (PMN) cells and a mixed population of monocytes/macrophages and lymphocytes (mononuclear cells) were cultured separately with a range of starch-based materials and composites with hydroxyapatite (HA). A combination of both reflected light microscopy and scanning electron microscopy (SEM) was used in order to study the leukocyte morphology. The quantification of the enzyme lactate dehydrogenase (LDH) was used to determine the number of viable cells adhered to the polymers. Cell adhesion and activation was characterised by immunocytochemistry based on the expression of several adhesion molecules, crucial in the progress of an inflammatory response. This work supports previous in vitro studies with PMN and monocytes/macrophages, which demonstrated that there are several properties of the materials that can influence and determine their biological response. From our study, monocytes/macrophages and lymphocytes adhere in similar amounts to more hydrophobic (SPCL) and to moderately hydrophilic (SEVA-C) surfaces and do not preferentially adhere to rougher substrates (SCA). Contrarily, more hydrophilic surfaces (SCA) induced higher PMN adhesion and lower activation. In addition, the hydroxyapatite reinforcement induces changes in cell behaviour for some materials but not for others. The observed response to starch-based biodegradable polymers was not significantly different from the control materials. Thus, the results reported herein indicate the low potential of the starch-based biodegradable polymers to induce inflammation especially the HA reinforced composite materials.
publishDate 2005
dc.date.none.fl_str_mv 2005
2005-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20058
url http://hdl.handle.net/1822/20058
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0957–4530
10.1007/s10856-005-4757-9
16388384
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1777303710159863808