Clustering Vertex-Weighted Graphs by Spectral Methods

Detalhes bibliográficos
Autor(a) principal: García-Zapata, Juan-Luis
Data de Publicação: 2021
Outros Autores: Grácio, Clara
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10174/34212
https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841
https://doi.org/doi.org/10.3390/math9222841
Resumo: Spectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue).
id RCAP_163089181c5c8ecca776fba3cd55d4d4
oai_identifier_str oai:dspace.uevora.pt:10174/34212
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Clustering Vertex-Weighted Graphs by Spectral MethodsclusteringpartitioningLaplacian graphvertex-weighted graphSpectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue).MDPI2023-02-13T16:31:59Z2023-02-132021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/34212https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841http://hdl.handle.net/10174/34212https://doi.org/doi.org/10.3390/math9222841engjgzapata@unex.esmgracio@uevora.pt721García-Zapata, Juan-LuisGrácio, Clarainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:36:20Zoai:dspace.uevora.pt:10174/34212Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:22:44.988522Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Clustering Vertex-Weighted Graphs by Spectral Methods
title Clustering Vertex-Weighted Graphs by Spectral Methods
spellingShingle Clustering Vertex-Weighted Graphs by Spectral Methods
García-Zapata, Juan-Luis
clustering
partitioning
Laplacian graph
vertex-weighted graph
title_short Clustering Vertex-Weighted Graphs by Spectral Methods
title_full Clustering Vertex-Weighted Graphs by Spectral Methods
title_fullStr Clustering Vertex-Weighted Graphs by Spectral Methods
title_full_unstemmed Clustering Vertex-Weighted Graphs by Spectral Methods
title_sort Clustering Vertex-Weighted Graphs by Spectral Methods
author García-Zapata, Juan-Luis
author_facet García-Zapata, Juan-Luis
Grácio, Clara
author_role author
author2 Grácio, Clara
author2_role author
dc.contributor.author.fl_str_mv García-Zapata, Juan-Luis
Grácio, Clara
dc.subject.por.fl_str_mv clustering
partitioning
Laplacian graph
vertex-weighted graph
topic clustering
partitioning
Laplacian graph
vertex-weighted graph
description Spectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue).
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01T00:00:00Z
2023-02-13T16:31:59Z
2023-02-13
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10174/34212
https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841
http://hdl.handle.net/10174/34212
https://doi.org/doi.org/10.3390/math9222841
url http://hdl.handle.net/10174/34212
https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841
https://doi.org/doi.org/10.3390/math9222841
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv jgzapata@unex.es
mgracio@uevora.pt
721
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136709121671168