Clustering Vertex-Weighted Graphs by Spectral Methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10174/34212 https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841 https://doi.org/doi.org/10.3390/math9222841 |
Resumo: | Spectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue). |
id |
RCAP_163089181c5c8ecca776fba3cd55d4d4 |
---|---|
oai_identifier_str |
oai:dspace.uevora.pt:10174/34212 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Clustering Vertex-Weighted Graphs by Spectral MethodsclusteringpartitioningLaplacian graphvertex-weighted graphSpectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue).MDPI2023-02-13T16:31:59Z2023-02-132021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10174/34212https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841http://hdl.handle.net/10174/34212https://doi.org/doi.org/10.3390/math9222841engjgzapata@unex.esmgracio@uevora.pt721García-Zapata, Juan-LuisGrácio, Clarainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-01-03T19:36:20Zoai:dspace.uevora.pt:10174/34212Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T01:22:44.988522Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Clustering Vertex-Weighted Graphs by Spectral Methods |
title |
Clustering Vertex-Weighted Graphs by Spectral Methods |
spellingShingle |
Clustering Vertex-Weighted Graphs by Spectral Methods García-Zapata, Juan-Luis clustering partitioning Laplacian graph vertex-weighted graph |
title_short |
Clustering Vertex-Weighted Graphs by Spectral Methods |
title_full |
Clustering Vertex-Weighted Graphs by Spectral Methods |
title_fullStr |
Clustering Vertex-Weighted Graphs by Spectral Methods |
title_full_unstemmed |
Clustering Vertex-Weighted Graphs by Spectral Methods |
title_sort |
Clustering Vertex-Weighted Graphs by Spectral Methods |
author |
García-Zapata, Juan-Luis |
author_facet |
García-Zapata, Juan-Luis Grácio, Clara |
author_role |
author |
author2 |
Grácio, Clara |
author2_role |
author |
dc.contributor.author.fl_str_mv |
García-Zapata, Juan-Luis Grácio, Clara |
dc.subject.por.fl_str_mv |
clustering partitioning Laplacian graph vertex-weighted graph |
topic |
clustering partitioning Laplacian graph vertex-weighted graph |
description |
Spectral techniques are often used to partition the set of vertices of a graph, or to form clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with potential, which also allows us to take into account weights on the vertices. These vertex weights are independent of the edge weights. In this way, we can cluster with the importance of vertices, assigning more weight to some vertices than to others, not considering only the number of vertices. We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of the Fiedler eigenvalue). |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01T00:00:00Z 2023-02-13T16:31:59Z 2023-02-13 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10174/34212 https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841 http://hdl.handle.net/10174/34212 https://doi.org/doi.org/10.3390/math9222841 |
url |
http://hdl.handle.net/10174/34212 https://doi.org/García-Zapata, J.-L.; Grácio, C. Clustering Vertex-Weighted Graphs by Spectral Methods. Mathematics 2021, 9, 2841. https:// doi.org/10.3390/math9222841 https://doi.org/doi.org/10.3390/math9222841 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
jgzapata@unex.es mgracio@uevora.pt 721 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136709121671168 |