Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue

Detalhes bibliográficos
Autor(a) principal: Dias, Luís G.
Data de Publicação: 2016
Outros Autores: Rodrigues, Nuno, Veloso, Ana C. A., Pereira, José A., Peres, António M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/40249
Resumo: Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
id RCAP_1731d1c33b6502da0a45552497396b27
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/40249
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongueSingle-cultivar extra-virgin olive oilSensory analysisPotentiometric electronic tongueLinear multivariate methodsSimulated annealing algorithmScience & TechnologyOlive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal.Springer VerlagUniversidade do MinhoDias, Luís G.Rodrigues, NunoVeloso, Ana C. A.Pereira, José A.Peres, António M.2016-022016-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/40249engDias, Luís G.; Rodrigues, Nuno; Veloso, Ana C. A.; Pereira, José A.; Peres, António M., Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 242(2), 259-270, 20161438-23771438-238510.1007/s00217-015-2537-4http://www.springer.com/food+science/journal/217info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:12Zoai:repositorium.sdum.uminho.pt:1822/40249Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:30.941182Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
spellingShingle Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
Dias, Luís G.
Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
Science & Technology
title_short Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_full Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_fullStr Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_full_unstemmed Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
title_sort Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
author Dias, Luís G.
author_facet Dias, Luís G.
Rodrigues, Nuno
Veloso, Ana C. A.
Pereira, José A.
Peres, António M.
author_role author
author2 Rodrigues, Nuno
Veloso, Ana C. A.
Pereira, José A.
Peres, António M.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Dias, Luís G.
Rodrigues, Nuno
Veloso, Ana C. A.
Pereira, José A.
Peres, António M.
dc.subject.por.fl_str_mv Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
Science & Technology
topic Single-cultivar extra-virgin olive oil
Sensory analysis
Potentiometric electronic tongue
Linear multivariate methods
Simulated annealing algorithm
Science & Technology
description Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
2016-02-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/40249
url http://hdl.handle.net/1822/40249
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Dias, Luís G.; Rodrigues, Nuno; Veloso, Ana C. A.; Pereira, José A.; Peres, António M., Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 242(2), 259-270, 2016
1438-2377
1438-2385
10.1007/s00217-015-2537-4
http://www.springer.com/food+science/journal/217
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer Verlag
publisher.none.fl_str_mv Springer Verlag
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799132767109251072