Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/40249 |
Resumo: | Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination. |
id |
RCAP_1731d1c33b6502da0a45552497396b27 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/40249 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongueSingle-cultivar extra-virgin olive oilSensory analysisPotentiometric electronic tongueLinear multivariate methodsSimulated annealing algorithmScience & TechnologyOlive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination.This work was co-financed by FCT/MEC and FEDER under Program PT2020 (Project UID/EQU/50020/2013); by Fundacao para a Ciencia e Tecnologia under the strategic funding of UID/BIO/04469/2013 unit; and by Project POCTEP through Project RED/AGROTEC-Experimentation network and transfer for development of agricultural and agro industrial sectors between Spain and Portugal.Springer VerlagUniversidade do MinhoDias, Luís G.Rodrigues, NunoVeloso, Ana C. A.Pereira, José A.Peres, António M.2016-022016-02-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/40249engDias, Luís G.; Rodrigues, Nuno; Veloso, Ana C. A.; Pereira, José A.; Peres, António M., Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 242(2), 259-270, 20161438-23771438-238510.1007/s00217-015-2537-4http://www.springer.com/food+science/journal/217info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:32:12Zoai:repositorium.sdum.uminho.pt:1822/40249Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:27:30.941182Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
title |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
spellingShingle |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue Dias, Luís G. Single-cultivar extra-virgin olive oil Sensory analysis Potentiometric electronic tongue Linear multivariate methods Simulated annealing algorithm Science & Technology |
title_short |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
title_full |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
title_fullStr |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
title_full_unstemmed |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
title_sort |
Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue |
author |
Dias, Luís G. |
author_facet |
Dias, Luís G. Rodrigues, Nuno Veloso, Ana C. A. Pereira, José A. Peres, António M. |
author_role |
author |
author2 |
Rodrigues, Nuno Veloso, Ana C. A. Pereira, José A. Peres, António M. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Dias, Luís G. Rodrigues, Nuno Veloso, Ana C. A. Pereira, José A. Peres, António M. |
dc.subject.por.fl_str_mv |
Single-cultivar extra-virgin olive oil Sensory analysis Potentiometric electronic tongue Linear multivariate methods Simulated annealing algorithm Science & Technology |
topic |
Single-cultivar extra-virgin olive oil Sensory analysis Potentiometric electronic tongue Linear multivariate methods Simulated annealing algorithm Science & Technology |
description |
Olive oil quality grading is traditionally assessed by human sensory evaluation of positive and negative attributes (olfactory, gustatory, and final olfactorygustatory sensations). However, it is not guaranteed that trained panelist can correctly classify monovarietal extra-virgin olive oils according to olive cultivar. In this work, the potential application of human (sensory panelists) and artificial (electronic tongue) sensory evaluation of olive oils was studied aiming to discriminate eight single-cultivar extra-virgin olive oils. Linear discriminant, partial least square discriminant, and sparse partial least square discriminant analyses were evaluated. The best predictive classification was obtained using linear discriminant analysis with simulated annealing selection algorithm. A low-level data fusion approach (18 electronic tongue signals and nine sensory attributes) enabled 100 % leave-one-out cross-validation correct classification, improving the discrimination capability of the individual use of sensor profiles or sensory attributes (70 and 57 % leave-one-out correct classifications, respectively). So, human sensory evaluation and electronic tongue analysis may be used as complementary tools allowing successful monovarietal olive oil discrimination. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02 2016-02-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/40249 |
url |
http://hdl.handle.net/1822/40249 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Dias, Luís G.; Rodrigues, Nuno; Veloso, Ana C. A.; Pereira, José A.; Peres, António M., Monovarietal extra-virgin olive oil classification: a fusion of human sensory attributes and an electronic tongue. European Food Research and Technology, 242(2), 259-270, 2016 1438-2377 1438-2385 10.1007/s00217-015-2537-4 http://www.springer.com/food+science/journal/217 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer Verlag |
publisher.none.fl_str_mv |
Springer Verlag |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799132767109251072 |