Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/153047 |
Resumo: | The industry 4.0 paradigm paves the way that manufacturing factories develop their real-time monitoring capabilities. In this context, this study investigates machine learning applications in real-world data from CNC machining sensors in Jasil, Portugal, for an anomaly detection task as industrial quality control. In order to improve the availability of systems, reduce maintenance costs, increase operational performance, and support decision-making. |
id |
RCAP_1784fb6823eb2a50bc1b6e12335c648e |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/153047 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniquesOutras ciências da engenharia e tecnologiasOther engineering and technologiesThe industry 4.0 paradigm paves the way that manufacturing factories develop their real-time monitoring capabilities. In this context, this study investigates machine learning applications in real-world data from CNC machining sensors in Jasil, Portugal, for an anomaly detection task as industrial quality control. In order to improve the availability of systems, reduce maintenance costs, increase operational performance, and support decision-making.2023-09-262023-09-26T00:00:00Z2026-09-25T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/153047TID:203423518engGabriel Copolecchia Carvalhalinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-22T01:35:10Zoai:repositorio-aberto.up.pt:10216/153047Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:34:27.904711Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
title |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
spellingShingle |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques Gabriel Copolecchia Carvalhal Outras ciências da engenharia e tecnologias Other engineering and technologies |
title_short |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
title_full |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
title_fullStr |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
title_full_unstemmed |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
title_sort |
Anomaly Detection on Multivariate Time Series from CNC Machining using Machine Learning techniques |
author |
Gabriel Copolecchia Carvalhal |
author_facet |
Gabriel Copolecchia Carvalhal |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gabriel Copolecchia Carvalhal |
dc.subject.por.fl_str_mv |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
topic |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
description |
The industry 4.0 paradigm paves the way that manufacturing factories develop their real-time monitoring capabilities. In this context, this study investigates machine learning applications in real-world data from CNC machining sensors in Jasil, Portugal, for an anomaly detection task as industrial quality control. In order to improve the availability of systems, reduce maintenance costs, increase operational performance, and support decision-making. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-26 2023-09-26T00:00:00Z 2026-09-25T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/153047 TID:203423518 |
url |
https://hdl.handle.net/10216/153047 |
identifier_str_mv |
TID:203423518 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136253237526528 |