Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/153034 |
Resumo: | The present work is mainly motivated by the challenges embraced by the metallic packing industry, in its path along the fourth industrial revolution (Industry 4.0). This work serves to bring Artificial Intelligence (AI) to a mass production lithography process to detect anomalous patterns, using Outlier Detection (OD) algorithms to prevent non-conformities and support quality control operators. All the OD algorithms deployment is based on Machine Learning (ML) techniques, scratching the surface of the process and quality monitoring applications in industrial scenarios. |
id |
RCAP_5c634f32cc6008eadcd9b034832961ce |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/153034 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine LearningOutras ciências da engenharia e tecnologiasOther engineering and technologiesThe present work is mainly motivated by the challenges embraced by the metallic packing industry, in its path along the fourth industrial revolution (Industry 4.0). This work serves to bring Artificial Intelligence (AI) to a mass production lithography process to detect anomalous patterns, using Outlier Detection (OD) algorithms to prevent non-conformities and support quality control operators. All the OD algorithms deployment is based on Machine Learning (ML) techniques, scratching the surface of the process and quality monitoring applications in industrial scenarios.2023-09-222023-09-22T00:00:00Z2026-09-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/10216/153034TID:203424476engJoão Gabriel Luís Patrícioinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-22T01:32:45Zoai:repositorio-aberto.up.pt:10216/153034Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:11:46.261453Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
title |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
spellingShingle |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning João Gabriel Luís Patrício Outras ciências da engenharia e tecnologias Other engineering and technologies |
title_short |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
title_full |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
title_fullStr |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
title_full_unstemmed |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
title_sort |
Anomaly Detection on Multivariate Time-Series from Lithography Equipment using Machine Learning |
author |
João Gabriel Luís Patrício |
author_facet |
João Gabriel Luís Patrício |
author_role |
author |
dc.contributor.author.fl_str_mv |
João Gabriel Luís Patrício |
dc.subject.por.fl_str_mv |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
topic |
Outras ciências da engenharia e tecnologias Other engineering and technologies |
description |
The present work is mainly motivated by the challenges embraced by the metallic packing industry, in its path along the fourth industrial revolution (Industry 4.0). This work serves to bring Artificial Intelligence (AI) to a mass production lithography process to detect anomalous patterns, using Outlier Detection (OD) algorithms to prevent non-conformities and support quality control operators. All the OD algorithms deployment is based on Machine Learning (ML) techniques, scratching the surface of the process and quality monitoring applications in industrial scenarios. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-09-22 2023-09-22T00:00:00Z 2026-09-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/153034 TID:203424476 |
url |
https://hdl.handle.net/10216/153034 |
identifier_str_mv |
TID:203424476 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799136040674394112 |