Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/21520 |
Resumo: | A number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings. |
id |
RCAP_178f12d9916cc6ce4161189a3d22b164 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/21520 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanicsProbability density functionStochastic processClassical MechanicsA number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings.This paper has been supported by the grant PID2020–115270GB–I00 funded by MCIN/AEI/10.13039/501100011033 and by the grant AICO/2021/302 (Generalitat Valenciana). The author CP was partially supported by CMUP (UID/-MAT/00144/2013), which is funded by Fundação para a Ciência e Tecnologia (FCT) (Portugal) with national (MEC) and European structural funds European Regional Development Fund (FEDER), under the partnership agreement PT2020.SpringerRepositório Científico do Instituto Politécnico do PortoBurgos, C.Cortés, J.-C.López-Navarro, E.Pinto, C.M.A.Villanueva, Rafael-J.20222035-01-01T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21520eng10.1140/epjp/s13360-022-02691-xmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:22Zoai:recipp.ipp.pt:10400.22/21520Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:34.956933Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
title |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
spellingShingle |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics Burgos, C. Probability density function Stochastic process Classical Mechanics |
title_short |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
title_full |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
title_fullStr |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
title_full_unstemmed |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
title_sort |
Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics |
author |
Burgos, C. |
author_facet |
Burgos, C. Cortés, J.-C. López-Navarro, E. Pinto, C.M.A. Villanueva, Rafael-J. |
author_role |
author |
author2 |
Cortés, J.-C. López-Navarro, E. Pinto, C.M.A. Villanueva, Rafael-J. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Burgos, C. Cortés, J.-C. López-Navarro, E. Pinto, C.M.A. Villanueva, Rafael-J. |
dc.subject.por.fl_str_mv |
Probability density function Stochastic process Classical Mechanics |
topic |
Probability density function Stochastic process Classical Mechanics |
description |
A number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2022-01-01T00:00:00Z 2035-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/21520 |
url |
http://hdl.handle.net/10400.22/21520 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1140/epjp/s13360-022-02691-x |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131503091777536 |