Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics

Detalhes bibliográficos
Autor(a) principal: Burgos, C.
Data de Publicação: 2022
Outros Autores: Cortés, J.-C., López-Navarro, E., Pinto, C.M.A., Villanueva, Rafael-J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/21520
Resumo: A number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings.
id RCAP_178f12d9916cc6ce4161189a3d22b164
oai_identifier_str oai:recipp.ipp.pt:10400.22/21520
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanicsProbability density functionStochastic processClassical MechanicsA number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings.This paper has been supported by the grant PID2020–115270GB–I00 funded by MCIN/AEI/10.13039/501100011033 and by the grant AICO/2021/302 (Generalitat Valenciana). The author CP was partially supported by CMUP (UID/-MAT/00144/2013), which is funded by Fundação para a Ciência e Tecnologia (FCT) (Portugal) with national (MEC) and European structural funds European Regional Development Fund (FEDER), under the partnership agreement PT2020.SpringerRepositório Científico do Instituto Politécnico do PortoBurgos, C.Cortés, J.-C.López-Navarro, E.Pinto, C.M.A.Villanueva, Rafael-J.20222035-01-01T00:00:00Z2022-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/21520eng10.1140/epjp/s13360-022-02691-xmetadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:17:22Zoai:recipp.ipp.pt:10400.22/21520Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:41:34.956933Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
title Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
spellingShingle Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
Burgos, C.
Probability density function
Stochastic process
Classical Mechanics
title_short Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
title_full Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
title_fullStr Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
title_full_unstemmed Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
title_sort Probabilistic analysis of a foundational class of generalized second-order linear differential equations in classic mechanics
author Burgos, C.
author_facet Burgos, C.
Cortés, J.-C.
López-Navarro, E.
Pinto, C.M.A.
Villanueva, Rafael-J.
author_role author
author2 Cortés, J.-C.
López-Navarro, E.
Pinto, C.M.A.
Villanueva, Rafael-J.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Burgos, C.
Cortés, J.-C.
López-Navarro, E.
Pinto, C.M.A.
Villanueva, Rafael-J.
dc.subject.por.fl_str_mv Probability density function
Stochastic process
Classical Mechanics
topic Probability density function
Stochastic process
Classical Mechanics
description A number of relevant models in Classical Mechanics are formulated by means of the differential equation y′′(t)+Atβy(t)=0 . In this paper, we improve the results recently established for a randomized reformulation of this model that includes a generalized derivative. The stochastic analysis permits solving that generalized model by computing reliable approximations of the probability density function of the solution, which is a stochastic process. The approach avoids constructing these approximations from limited statistical punctual information and the Principle of Maximum Entropy by directly constructing a sequence of approximations using the Probabilistic Transformation Method. We prove that these approximations converge to the exact density under mild conditions on the data. Finally, several numerical examples illustrate our theoretical findings.
publishDate 2022
dc.date.none.fl_str_mv 2022
2022-01-01T00:00:00Z
2035-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/21520
url http://hdl.handle.net/10400.22/21520
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1140/epjp/s13360-022-02691-x
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131503091777536