In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/32925 |
Resumo: | Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono-and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell-biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. |
id |
RCAP_1a0cef58c03e1657eaab256b1cd2b311 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/32925 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineeringScience & TechnologyNatural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono-and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell-biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts.This work was supported by the European Community's Seventh Framework Programme (FP7-HEALTH-2011) under grant agreement No. 278612. This work was also co-funded by Programa Operacional Regional do Norte (ON.2-O Novo Norte), ao abrigo do Quadro de Referencia Estrategico Nacional (QREN), and atraves do Fundo Europeu de Desenvolvimento Regional (FEDER). The authors gratefully acknowledge the delivery of the chitosan raw material by Altakitin S.A., Portugal, and the fabrication of chitosan films by Medovent GmbH, Germany.Mary Ann LiebertUniversidade do MinhoWrobel, SandraSerra, Sofia CristinaSamy, S. M.Sousa, NunoHeimann, ClaudiaBarwig, ChristinaGrothe, ClaudiaSalgado, A. J.Talini, Kirsten Haastert20142014-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/32925eng1937-335X10.1089/ten.tea.2013.062124606318http://www.liebertpub.cominfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-11T06:17:08Zoai:repositorium.sdum.uminho.pt:1822/32925Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-11T06:17:08Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
title |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
spellingShingle |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering Wrobel, Sandra Science & Technology |
title_short |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
title_full |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
title_fullStr |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
title_full_unstemmed |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
title_sort |
In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering |
author |
Wrobel, Sandra |
author_facet |
Wrobel, Sandra Serra, Sofia Cristina Samy, S. M. Sousa, Nuno Heimann, Claudia Barwig, Christina Grothe, Claudia Salgado, A. J. Talini, Kirsten Haastert |
author_role |
author |
author2 |
Serra, Sofia Cristina Samy, S. M. Sousa, Nuno Heimann, Claudia Barwig, Christina Grothe, Claudia Salgado, A. J. Talini, Kirsten Haastert |
author2_role |
author author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Wrobel, Sandra Serra, Sofia Cristina Samy, S. M. Sousa, Nuno Heimann, Claudia Barwig, Christina Grothe, Claudia Salgado, A. J. Talini, Kirsten Haastert |
dc.subject.por.fl_str_mv |
Science & Technology |
topic |
Science & Technology |
description |
Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)-immortalized, neonatal, and adult-as well as rat bone-marrow-derived mesenchymal stromal cells (BMSCs) were analyzed with regard to their cell metabolic activity, proliferation profiles, and cell morphology after different time points of mono-and cocultures on the chitosan films. Overall the results demonstrate a good cytocompatibility of the chitosan substrate. Both cell types were viable on the biomaterial and showed different metabolic activities and proliferation behavior, indicating cell-type-specific cell-biomaterial interaction. Moreover, the cell types also displayed their typical morphology. In cocultures adult SCs used the BMSCs as a feeder layer and no negative interactions between both cell types were detected. Further, the chitosan films allow neurite outgrowth from dissociated sensory neurons, which is additionally supported on film preseeded with SC-BMSC cocultures. The presented chitosan films therefore demonstrate high potential for their use in tissue-engineered nerve grafts. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 2014-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/32925 |
url |
http://hdl.handle.net/1822/32925 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1937-335X 10.1089/ten.tea.2013.0621 24606318 http://www.liebertpub.com |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Mary Ann Liebert |
publisher.none.fl_str_mv |
Mary Ann Liebert |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817544917953544192 |