Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach

Detalhes bibliográficos
Autor(a) principal: Oliveira, J. T.
Data de Publicação: 2008
Outros Autores: Correlo, V. M., Sol, P. C., Pinto, A. R., Malafaya, P. B., Salgado, A. J., Bhattacharya, Mrinal, Charbord, Pierre, Neves, N. M., Reis, R. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/20308
Resumo: In this work, scaffolds derived from a new biomaterial originated from the combination of a natural material and a synthetic material were tested for assessing their suitability for cartilage tissue engineering applications. In order to obtain a better outcome result in terms of scaffolds’ overall properties, different blends of natural and synthetic materials were created. Chitosan and polybutylene succinate (CPBS) 50/50 (wt%) were melt blended using a twin-screw extruder and processed into 5 5 5mm scaffolds by compression moulding with salt leaching. Micro-computed tomography analysis calculated an average of 66.29% porosity and 92.78% interconnectivity degree for the presented scaffolds. The salt particles used ranged in size between 63 and 125 lm, retrieving an average pore size of 251.28 lm. Regarding the mechanical properties, the compressive modulus was of 1.73 ± 0.4MPa (Esec 1%). Cytotoxicity evaluation revealed that the leachables released by the developed porous structures were not harmful to the cells and hence were noncytotoxic. Direct contact assays were carried out using a mouse bone marrow–derived mesenchymal progenitor cell line (BMC9). Cells were seeded at a density of 5 105 cells/scaffold and allowed to grow for periods up to 3 weeks under chondrogenic differentiating conditions. Scanning electron microscopy analysis revealed that the cells were able to proliferate and colonize the scaffold structure, and MTS test demonstrated cell viability during the time of the experiment. Finally, Western blot performed for collagen type II, a natural cartilage extracellular matrix component, showed that this protein was being expressed by the end of 3 weeks, which seems to indicate that the BMC9 cells were being differentiated toward the chondrogenic pathway. These results indicate the adequacy of these newly developed C-PBS scaffolds for supporting cell growth and differentiation toward the chondrogenic pathway, suggesting that they should be considered for further studies in the cartilage tissue engineering field.
id RCAP_643eb48b5cd335d0b56c04c1b1fa879f
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/20308
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approachScience & TechnologyIn this work, scaffolds derived from a new biomaterial originated from the combination of a natural material and a synthetic material were tested for assessing their suitability for cartilage tissue engineering applications. In order to obtain a better outcome result in terms of scaffolds’ overall properties, different blends of natural and synthetic materials were created. Chitosan and polybutylene succinate (CPBS) 50/50 (wt%) were melt blended using a twin-screw extruder and processed into 5 5 5mm scaffolds by compression moulding with salt leaching. Micro-computed tomography analysis calculated an average of 66.29% porosity and 92.78% interconnectivity degree for the presented scaffolds. The salt particles used ranged in size between 63 and 125 lm, retrieving an average pore size of 251.28 lm. Regarding the mechanical properties, the compressive modulus was of 1.73 ± 0.4MPa (Esec 1%). Cytotoxicity evaluation revealed that the leachables released by the developed porous structures were not harmful to the cells and hence were noncytotoxic. Direct contact assays were carried out using a mouse bone marrow–derived mesenchymal progenitor cell line (BMC9). Cells were seeded at a density of 5 105 cells/scaffold and allowed to grow for periods up to 3 weeks under chondrogenic differentiating conditions. Scanning electron microscopy analysis revealed that the cells were able to proliferate and colonize the scaffold structure, and MTS test demonstrated cell viability during the time of the experiment. Finally, Western blot performed for collagen type II, a natural cartilage extracellular matrix component, showed that this protein was being expressed by the end of 3 weeks, which seems to indicate that the BMC9 cells were being differentiated toward the chondrogenic pathway. These results indicate the adequacy of these newly developed C-PBS scaffolds for supporting cell growth and differentiation toward the chondrogenic pathway, suggesting that they should be considered for further studies in the cartilage tissue engineering field.J. T. Oliveira would like to acknowledge the grant (SFRH/ BD17135/2004) from Portuguese Foundation for Science and Technology (FCT). The authors would like to thank Fernanda Marques, at the Institute for Health and Life Sciences (ICVS), University of Minho, Braga, Portugal, for her help with the Western blot analysis, as well as the staff at ICVS for allowing to use their facilities. The monoclonal antibody for collagen type II was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by the Department of Biological Sciences, University of Iowa (Iowa City, IA). This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283), and partially supported by the European Project GENOSTEM (LSHB-CT-2003-503161) and the FCT Project CartiScaff (POCTI/SAU-BMA/58991/2004).Mary Ann LiebertUniversidade do MinhoOliveira, J. T.Correlo, V. M.Sol, P. C.Pinto, A. R.Malafaya, P. B.Salgado, A. J.Bhattacharya, MrinalCharbord, PierreNeves, N. M.Reis, R. L.20082008-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/20308eng2152-49472152-495510.1089/ten.tea.2007.0307info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:50:09Zoai:repositorium.sdum.uminho.pt:1822/20308Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:48:48.655921Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
title Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
spellingShingle Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
Oliveira, J. T.
Science & Technology
title_short Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
title_full Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
title_fullStr Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
title_full_unstemmed Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
title_sort Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach
author Oliveira, J. T.
author_facet Oliveira, J. T.
Correlo, V. M.
Sol, P. C.
Pinto, A. R.
Malafaya, P. B.
Salgado, A. J.
Bhattacharya, Mrinal
Charbord, Pierre
Neves, N. M.
Reis, R. L.
author_role author
author2 Correlo, V. M.
Sol, P. C.
Pinto, A. R.
Malafaya, P. B.
Salgado, A. J.
Bhattacharya, Mrinal
Charbord, Pierre
Neves, N. M.
Reis, R. L.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Oliveira, J. T.
Correlo, V. M.
Sol, P. C.
Pinto, A. R.
Malafaya, P. B.
Salgado, A. J.
Bhattacharya, Mrinal
Charbord, Pierre
Neves, N. M.
Reis, R. L.
dc.subject.por.fl_str_mv Science & Technology
topic Science & Technology
description In this work, scaffolds derived from a new biomaterial originated from the combination of a natural material and a synthetic material were tested for assessing their suitability for cartilage tissue engineering applications. In order to obtain a better outcome result in terms of scaffolds’ overall properties, different blends of natural and synthetic materials were created. Chitosan and polybutylene succinate (CPBS) 50/50 (wt%) were melt blended using a twin-screw extruder and processed into 5 5 5mm scaffolds by compression moulding with salt leaching. Micro-computed tomography analysis calculated an average of 66.29% porosity and 92.78% interconnectivity degree for the presented scaffolds. The salt particles used ranged in size between 63 and 125 lm, retrieving an average pore size of 251.28 lm. Regarding the mechanical properties, the compressive modulus was of 1.73 ± 0.4MPa (Esec 1%). Cytotoxicity evaluation revealed that the leachables released by the developed porous structures were not harmful to the cells and hence were noncytotoxic. Direct contact assays were carried out using a mouse bone marrow–derived mesenchymal progenitor cell line (BMC9). Cells were seeded at a density of 5 105 cells/scaffold and allowed to grow for periods up to 3 weeks under chondrogenic differentiating conditions. Scanning electron microscopy analysis revealed that the cells were able to proliferate and colonize the scaffold structure, and MTS test demonstrated cell viability during the time of the experiment. Finally, Western blot performed for collagen type II, a natural cartilage extracellular matrix component, showed that this protein was being expressed by the end of 3 weeks, which seems to indicate that the BMC9 cells were being differentiated toward the chondrogenic pathway. These results indicate the adequacy of these newly developed C-PBS scaffolds for supporting cell growth and differentiation toward the chondrogenic pathway, suggesting that they should be considered for further studies in the cartilage tissue engineering field.
publishDate 2008
dc.date.none.fl_str_mv 2008
2008-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/20308
url http://hdl.handle.net/1822/20308
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2152-4947
2152-4955
10.1089/ten.tea.2007.0307
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Mary Ann Liebert
publisher.none.fl_str_mv Mary Ann Liebert
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133067343822848