Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/20902 |
Resumo: | In wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19\% lower packet loss than other learning-based frameworks. |
id |
RCAP_1a27ccf5e8cdeeaf37ecaadd2dfdd24b |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/20902 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks220102UAVWPSNDeep reinforcement learningLSTMWireless power transferIn wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19\% lower packet loss than other learning-based frameworks.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDP/UIDB/04234/2020); also by national funds through the FCT, under CMU Portugal partnership, within project CMU/TIC/0022/2019 (CRUAV). This work was in part supported by the Federal Ministry of Education and Research (BMBF, Germany) as part of the 6G Research and Innovation Cluster 6G-RIC under Grant 16KISK020K.IEEERepositório Científico do Instituto Politécnico do PortoLi, KaiNi, WeiKurunathan, HarrisonDressler, Falko2022-10-03T14:13:03Z2022-05-162022-05-16T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/20902eng10.1109/ICC45855.2022.9838967info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:14:26Zoai:recipp.ipp.pt:10400.22/20902Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:39:48.013426Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks 220102 |
title |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
spellingShingle |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks Li, Kai UAV WPSN Deep reinforcement learning LSTM Wireless power transfer |
title_short |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
title_full |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
title_fullStr |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
title_full_unstemmed |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
title_sort |
Data-driven Deep Reinforcement Learning for Online Flight Resource Allocation in UAVaided Wireless Powered Sensor Networks |
author |
Li, Kai |
author_facet |
Li, Kai Ni, Wei Kurunathan, Harrison Dressler, Falko |
author_role |
author |
author2 |
Ni, Wei Kurunathan, Harrison Dressler, Falko |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Li, Kai Ni, Wei Kurunathan, Harrison Dressler, Falko |
dc.subject.por.fl_str_mv |
UAV WPSN Deep reinforcement learning LSTM Wireless power transfer |
topic |
UAV WPSN Deep reinforcement learning LSTM Wireless power transfer |
description |
In wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19\% lower packet loss than other learning-based frameworks. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-10-03T14:13:03Z 2022-05-16 2022-05-16T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/20902 |
url |
http://hdl.handle.net/10400.22/20902 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1109/ICC45855.2022.9838967 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131485689610240 |