Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.22/16331 |
Resumo: | In Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%. |
id |
RCAP_c3648786eac386fb538bb9d3964f02e2 |
---|---|
oai_identifier_str |
oai:recipp.ipp.pt:10400.22/16331 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVsUnmanned aerial vehiclesFlight controlData collectionDeep reinforcement learningIn Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%.IEEERepositório Científico do Instituto Politécnico do PortoLi, KaiEmami, YousefNi, WeiTovar, EduardoHan, Zhu20202119-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16331eng2576-315610.1109/LNET.2020.3002341metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:03:05Zoai:recipp.ipp.pt:10400.22/16331Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:01.179994Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
title |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
spellingShingle |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs Li, Kai Unmanned aerial vehicles Flight control Data collection Deep reinforcement learning |
title_short |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
title_full |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
title_fullStr |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
title_full_unstemmed |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
title_sort |
Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs |
author |
Li, Kai |
author_facet |
Li, Kai Emami, Yousef Ni, Wei Tovar, Eduardo Han, Zhu |
author_role |
author |
author2 |
Emami, Yousef Ni, Wei Tovar, Eduardo Han, Zhu |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Repositório Científico do Instituto Politécnico do Porto |
dc.contributor.author.fl_str_mv |
Li, Kai Emami, Yousef Ni, Wei Tovar, Eduardo Han, Zhu |
dc.subject.por.fl_str_mv |
Unmanned aerial vehicles Flight control Data collection Deep reinforcement learning |
topic |
Unmanned aerial vehicles Flight control Data collection Deep reinforcement learning |
description |
In Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020 2020-01-01T00:00:00Z 2119-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.22/16331 |
url |
http://hdl.handle.net/10400.22/16331 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2576-3156 10.1109/LNET.2020.3002341 |
dc.rights.driver.fl_str_mv |
metadata only access info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
metadata only access |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799131451013201920 |