Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs

Detalhes bibliográficos
Autor(a) principal: Li, Kai
Data de Publicação: 2020
Outros Autores: Emami, Yousef, Ni, Wei, Tovar, Eduardo, Han, Zhu
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.22/16331
Resumo: In Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%.
id RCAP_c3648786eac386fb538bb9d3964f02e2
oai_identifier_str oai:recipp.ipp.pt:10400.22/16331
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVsUnmanned aerial vehiclesFlight controlData collectionDeep reinforcement learningIn Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%.IEEERepositório Científico do Instituto Politécnico do PortoLi, KaiEmami, YousefNi, WeiTovar, EduardoHan, Zhu20202119-01-01T00:00:00Z2020-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.22/16331eng2576-315610.1109/LNET.2020.3002341metadata only accessinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-03-13T13:03:05Zoai:recipp.ipp.pt:10400.22/16331Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T17:36:01.179994Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
title Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
spellingShingle Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
Li, Kai
Unmanned aerial vehicles
Flight control
Data collection
Deep reinforcement learning
title_short Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
title_full Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
title_fullStr Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
title_full_unstemmed Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
title_sort Onboard Deep Deterministic Policy Gradients for Online Flight Resource Allocation of UAVs
author Li, Kai
author_facet Li, Kai
Emami, Yousef
Ni, Wei
Tovar, Eduardo
Han, Zhu
author_role author
author2 Emami, Yousef
Ni, Wei
Tovar, Eduardo
Han, Zhu
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Repositório Científico do Instituto Politécnico do Porto
dc.contributor.author.fl_str_mv Li, Kai
Emami, Yousef
Ni, Wei
Tovar, Eduardo
Han, Zhu
dc.subject.por.fl_str_mv Unmanned aerial vehicles
Flight control
Data collection
Deep reinforcement learning
topic Unmanned aerial vehicles
Flight control
Data collection
Deep reinforcement learning
description In Unmanned Aerial Vehicle (UAV) enabled data collection, scheduling data transmissions of the ground nodes while controlling flight of the UAV, e.g., heading and velocity, is critical to reduce the data packet loss resulting from buffer overflows and channel fading. In this letter, a new online flight resource allocation scheme based on deep deterministic policy gradients (DDPG-FRAS) is studied to jointly optimize the flight control of the UAV and data collection scheduling along the trajectory in real time, thereby asymptotically minimizing the packet loss of the ground sensor networks. Numerical results confirm that the proposed DDPG-FRAS can gradually converge, while enlarging the buffer size can reduce the packet loss by 47.9%.
publishDate 2020
dc.date.none.fl_str_mv 2020
2020-01-01T00:00:00Z
2119-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.22/16331
url http://hdl.handle.net/10400.22/16331
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2576-3156
10.1109/LNET.2020.3002341
dc.rights.driver.fl_str_mv metadata only access
info:eu-repo/semantics/openAccess
rights_invalid_str_mv metadata only access
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IEEE
publisher.none.fl_str_mv IEEE
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799131451013201920