Quantitative Pharmacophore Models with Inductive Logic Programming
Autor(a) principal: | |
---|---|
Data de Publicação: | 2006 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | https://hdl.handle.net/10216/75538 |
Resumo: | Three-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning. |
id |
RCAP_1a55fc32d5a9f3680d2d51af356e27a6 |
---|---|
oai_identifier_str |
oai:repositorio-aberto.up.pt:10216/75538 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Quantitative Pharmacophore Models with Inductive Logic ProgrammingCiências farmacológicas, Ciência de computadores, Ciências da computação e da informaçãoPharmacological sciences, Computer science, Computer and information sciencesThree-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning.20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/75538eng0885-612510.1007/s10994-006-8262-2Ashwin SrinivasanDavid PageRui CamachoRoss Kinginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:22:05Zoai:repositorio-aberto.up.pt:10216/75538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:59:47.518736Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Quantitative Pharmacophore Models with Inductive Logic Programming |
title |
Quantitative Pharmacophore Models with Inductive Logic Programming |
spellingShingle |
Quantitative Pharmacophore Models with Inductive Logic Programming Ashwin Srinivasan Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação Pharmacological sciences, Computer science, Computer and information sciences |
title_short |
Quantitative Pharmacophore Models with Inductive Logic Programming |
title_full |
Quantitative Pharmacophore Models with Inductive Logic Programming |
title_fullStr |
Quantitative Pharmacophore Models with Inductive Logic Programming |
title_full_unstemmed |
Quantitative Pharmacophore Models with Inductive Logic Programming |
title_sort |
Quantitative Pharmacophore Models with Inductive Logic Programming |
author |
Ashwin Srinivasan |
author_facet |
Ashwin Srinivasan David Page Rui Camacho Ross King |
author_role |
author |
author2 |
David Page Rui Camacho Ross King |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Ashwin Srinivasan David Page Rui Camacho Ross King |
dc.subject.por.fl_str_mv |
Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação Pharmacological sciences, Computer science, Computer and information sciences |
topic |
Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação Pharmacological sciences, Computer science, Computer and information sciences |
description |
Three-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006 2006-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/10216/75538 |
url |
https://hdl.handle.net/10216/75538 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0885-6125 10.1007/s10994-006-8262-2 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799135921676746752 |