Quantitative Pharmacophore Models with Inductive Logic Programming

Detalhes bibliográficos
Autor(a) principal: Ashwin Srinivasan
Data de Publicação: 2006
Outros Autores: David Page, Rui Camacho, Ross King
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: https://hdl.handle.net/10216/75538
Resumo: Three-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning.
id RCAP_1a55fc32d5a9f3680d2d51af356e27a6
oai_identifier_str oai:repositorio-aberto.up.pt:10216/75538
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantitative Pharmacophore Models with Inductive Logic ProgrammingCiências farmacológicas, Ciência de computadores, Ciências da computação e da informaçãoPharmacological sciences, Computer science, Computer and information sciencesThree-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning.20062006-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttps://hdl.handle.net/10216/75538eng0885-612510.1007/s10994-006-8262-2Ashwin SrinivasanDavid PageRui CamachoRoss Kinginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-29T14:22:05Zoai:repositorio-aberto.up.pt:10216/75538Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T23:59:47.518736Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantitative Pharmacophore Models with Inductive Logic Programming
title Quantitative Pharmacophore Models with Inductive Logic Programming
spellingShingle Quantitative Pharmacophore Models with Inductive Logic Programming
Ashwin Srinivasan
Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação
Pharmacological sciences, Computer science, Computer and information sciences
title_short Quantitative Pharmacophore Models with Inductive Logic Programming
title_full Quantitative Pharmacophore Models with Inductive Logic Programming
title_fullStr Quantitative Pharmacophore Models with Inductive Logic Programming
title_full_unstemmed Quantitative Pharmacophore Models with Inductive Logic Programming
title_sort Quantitative Pharmacophore Models with Inductive Logic Programming
author Ashwin Srinivasan
author_facet Ashwin Srinivasan
David Page
Rui Camacho
Ross King
author_role author
author2 David Page
Rui Camacho
Ross King
author2_role author
author
author
dc.contributor.author.fl_str_mv Ashwin Srinivasan
David Page
Rui Camacho
Ross King
dc.subject.por.fl_str_mv Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação
Pharmacological sciences, Computer science, Computer and information sciences
topic Ciências farmacológicas, Ciência de computadores, Ciências da computação e da informação
Pharmacological sciences, Computer science, Computer and information sciences
description Three-dimensional models, or pharmacophores, describing Euclidean constraints on the location on small molecules of functional groups (like hydrophobic groups, hydrogen acceptors and donors, etc.), are often used in drug design to describe the medicinal activity of potential drugs (or ligands'). This medicinal activity is produced by interaction of the functional groups on the ligand with a binding site on a target protein. In identifying structure-activity relations of this kind there are three principal issues: (1) It is often dicult to \align" the ligands in order to identify common structural properties that may be responsible for activity; (2) Ligands in solution can adopt dierent shapes (or conformations') arising from torsional rotations about bonds. The 3-D molecular substructure is typically sought on one or more low-energy conformers; and (3) Pharmacophore models must, ideally, predict medicinal activity on some quantitative scale. It has been shown that the logical representation adopted by Inductive Logic Programming (ILP) naturally resolves many of the diculties associated with the alignment and multiconformation issues. However, the predictions of models constructed by ILP have hitherto only been nominal, predicting medicinal activity to be present or absent. In this paper, we investigate the construction of two kinds of quantitative pharmacophoric models with ILP: (a) Models that predict the probability that a ligand is \active"; and (b) Models that predict the actual medicinal activity of a ligand. Quantitative predictions are obtained by the utilising the following statistical procedures as background knowledge: logistic regression and naive Bayes, for probability prediction; linear and kernel regression, for activity prediction. The multi-conformation issue and, more generally, the relational representation used by ILP results in some special diculties in the use of any statistical procedure. We present the principal issues and some solutions. Specically, using data on the inhibition of the protease Thermolysin, we demonstrate that it is possible for an ILP program to construct good quantitative structure-activity models. We also comment on the relationship of this work to other recent developments in statistical relational learning.
publishDate 2006
dc.date.none.fl_str_mv 2006
2006-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/10216/75538
url https://hdl.handle.net/10216/75538
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0885-6125
10.1007/s10994-006-8262-2
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799135921676746752