Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators

Detalhes bibliográficos
Autor(a) principal: Macedo, Pedro
Data de Publicação: 2016
Outros Autores: Scotto, Manuel, Silva, Elvira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15003
Resumo: It is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies.
id RCAP_1c3022765a1d1613673fbd1570bf1308
oai_identifier_str oai:ria.ua.pt:10773/15003
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimatorsCollinearityLinear regressionMaximum entropyMicronumerosityOutliersQuantum electrodynamicsIt is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies.Taylor & Francis2018-07-20T14:00:51Z2016-01-01T00:00:00Z20162016-12-31T15:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15003eng0361-091810.1080/03610918.2014.957838Macedo, PedroScotto, ManuelSilva, Elvirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:38Zoai:ria.ua.pt:10773/15003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:27.141796Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
title Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
spellingShingle Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
Macedo, Pedro
Collinearity
Linear regression
Maximum entropy
Micronumerosity
Outliers
Quantum electrodynamics
title_short Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
title_full Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
title_fullStr Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
title_full_unstemmed Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
title_sort Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
author Macedo, Pedro
author_facet Macedo, Pedro
Scotto, Manuel
Silva, Elvira
author_role author
author2 Scotto, Manuel
Silva, Elvira
author2_role author
author
dc.contributor.author.fl_str_mv Macedo, Pedro
Scotto, Manuel
Silva, Elvira
dc.subject.por.fl_str_mv Collinearity
Linear regression
Maximum entropy
Micronumerosity
Outliers
Quantum electrodynamics
topic Collinearity
Linear regression
Maximum entropy
Micronumerosity
Outliers
Quantum electrodynamics
description It is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01T00:00:00Z
2016
2016-12-31T15:00:00Z
2018-07-20T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15003
url http://hdl.handle.net/10773/15003
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0361-0918
10.1080/03610918.2014.957838
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137554560188416