Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15003 |
Resumo: | It is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies. |
id |
RCAP_1c3022765a1d1613673fbd1570bf1308 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15003 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimatorsCollinearityLinear regressionMaximum entropyMicronumerosityOutliersQuantum electrodynamicsIt is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies.Taylor & Francis2018-07-20T14:00:51Z2016-01-01T00:00:00Z20162016-12-31T15:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15003eng0361-091810.1080/03610918.2014.957838Macedo, PedroScotto, ManuelSilva, Elvirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:27:38Zoai:ria.ua.pt:10773/15003Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:50:27.141796Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
title |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
spellingShingle |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators Macedo, Pedro Collinearity Linear regression Maximum entropy Micronumerosity Outliers Quantum electrodynamics |
title_short |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
title_full |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
title_fullStr |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
title_full_unstemmed |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
title_sort |
Regularization with maximum entropy and quantum electrodynamics: the MERG(E) estimators |
author |
Macedo, Pedro |
author_facet |
Macedo, Pedro Scotto, Manuel Silva, Elvira |
author_role |
author |
author2 |
Scotto, Manuel Silva, Elvira |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Macedo, Pedro Scotto, Manuel Silva, Elvira |
dc.subject.por.fl_str_mv |
Collinearity Linear regression Maximum entropy Micronumerosity Outliers Quantum electrodynamics |
topic |
Collinearity Linear regression Maximum entropy Micronumerosity Outliers Quantum electrodynamics |
description |
It is well-known that under fairly conditions linear regression becomes a powerful statistical tool. In practice, however, some of these conditions are usually not satisfied and regression models become ill-posed, implying that the application of traditional estimation methods may lead to non-unique or highly unstable solutions. Addressing this issue, in this paper a new class of maximum entropy estimators suitable for dealing with ill-posed models, namely for the estimation of regression models with small samples sizes affected by collinearity and outliers, is introduced. The performance of the new estimators is illustrated through several simulation studies. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01T00:00:00Z 2016 2016-12-31T15:00:00Z 2018-07-20T14:00:51Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15003 |
url |
http://hdl.handle.net/10773/15003 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0361-0918 10.1080/03610918.2014.957838 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137554560188416 |