A theory of spike coding networks with heterogeneous postsynaptic potentials
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/32002 |
Resumo: | Modeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes. |
id |
RCAP_1c39ff4f6cd7a99f25d8927d1efc6d2e |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/32002 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
A theory of spike coding networks with heterogeneous postsynaptic potentialsNeuroscienceSpike coding networksBalanced networksSpiking neural networksRecurrent networksLeaky integrate-and-fire networksPostsynaptic potentialsModeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes.Modelar redes neuronais com princípios biologicamente plausíveis é um desafio para a neurociência teórica. De facto, há evidência crescente de que os tempos precisos dos potenciais de ação emitidos por um neurónio desempenham um papel crucial na computação neuronal. No entanto, construir redes neuronais funcionais que mimetizem a variabilidade de disparos encontrada in vivo não é uma tarefa trivial. Boerlin et al. sugeriu um modelo de redes leaky integrate-and-fire que, através de um balanço apertado entre excitação e inibição neuronal, conseguem construir uma estimativa de um sinal multi-dimensional em tempo real, usando a combinação ponderada de séries de potenciais de ação com variabilidade do tipo Poisson. Apesar destas plausabilidades biológicas, estas redes codificantes por potenciais de ação sustentam-se na propagação instantânea desta entidade biofísica. Uma vez que esta assunção não vai de encontro às escalas de tempo das sinapses observadas no cérebro, esta é uma limitação do modelo. Assim, tendo como objectivo construir uma rede codificante por potenciais de ação com potenciais pós-sinápticos biologicamente plasíveis, neste trabalho usamos o facto do modelo original destas redes permitir a reconstrução de sinais multi-dimensionais para transformar o problema de reconstrução preditiva num problema multi-dimensional no domínio temporal. Através desta transformação, emergem três propriedades que estas redes devem ter para se manterem funcionais: não codificar o presente; permitir heterogeneidade temporal; prever o futuro da estimativa da rede de acordo com a dinâmica do sinal original. Assim, introduzindo estas propriedades nas assunções originais de Boerlin et al., mostramos que é possível conceber uma rede codificante por potenciais de ação que reconstrua sinais multi-dimensionais sem a necessidade da comunicação instantânea dos mesmos.2021-09-02T12:57:55Z2021-07-01T00:00:00Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32002engSilva, Juliana Couras Fernandesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:01:52Zoai:ria.ua.pt:10773/32002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:49.923049Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
title |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
spellingShingle |
A theory of spike coding networks with heterogeneous postsynaptic potentials Silva, Juliana Couras Fernandes Neuroscience Spike coding networks Balanced networks Spiking neural networks Recurrent networks Leaky integrate-and-fire networks Postsynaptic potentials |
title_short |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
title_full |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
title_fullStr |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
title_full_unstemmed |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
title_sort |
A theory of spike coding networks with heterogeneous postsynaptic potentials |
author |
Silva, Juliana Couras Fernandes |
author_facet |
Silva, Juliana Couras Fernandes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Juliana Couras Fernandes |
dc.subject.por.fl_str_mv |
Neuroscience Spike coding networks Balanced networks Spiking neural networks Recurrent networks Leaky integrate-and-fire networks Postsynaptic potentials |
topic |
Neuroscience Spike coding networks Balanced networks Spiking neural networks Recurrent networks Leaky integrate-and-fire networks Postsynaptic potentials |
description |
Modeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-02T12:57:55Z 2021-07-01T00:00:00Z 2021-07-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/32002 |
url |
http://hdl.handle.net/10773/32002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137693467148288 |