A theory of spike coding networks with heterogeneous postsynaptic potentials

Detalhes bibliográficos
Autor(a) principal: Silva, Juliana Couras Fernandes
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/32002
Resumo: Modeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes.
id RCAP_1c39ff4f6cd7a99f25d8927d1efc6d2e
oai_identifier_str oai:ria.ua.pt:10773/32002
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling A theory of spike coding networks with heterogeneous postsynaptic potentialsNeuroscienceSpike coding networksBalanced networksSpiking neural networksRecurrent networksLeaky integrate-and-fire networksPostsynaptic potentialsModeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes.Modelar redes neuronais com princípios biologicamente plausíveis é um desafio para a neurociência teórica. De facto, há evidência crescente de que os tempos precisos dos potenciais de ação emitidos por um neurónio desempenham um papel crucial na computação neuronal. No entanto, construir redes neuronais funcionais que mimetizem a variabilidade de disparos encontrada in vivo não é uma tarefa trivial. Boerlin et al. sugeriu um modelo de redes leaky integrate-and-fire que, através de um balanço apertado entre excitação e inibição neuronal, conseguem construir uma estimativa de um sinal multi-dimensional em tempo real, usando a combinação ponderada de séries de potenciais de ação com variabilidade do tipo Poisson. Apesar destas plausabilidades biológicas, estas redes codificantes por potenciais de ação sustentam-se na propagação instantânea desta entidade biofísica. Uma vez que esta assunção não vai de encontro às escalas de tempo das sinapses observadas no cérebro, esta é uma limitação do modelo. Assim, tendo como objectivo construir uma rede codificante por potenciais de ação com potenciais pós-sinápticos biologicamente plasíveis, neste trabalho usamos o facto do modelo original destas redes permitir a reconstrução de sinais multi-dimensionais para transformar o problema de reconstrução preditiva num problema multi-dimensional no domínio temporal. Através desta transformação, emergem três propriedades que estas redes devem ter para se manterem funcionais: não codificar o presente; permitir heterogeneidade temporal; prever o futuro da estimativa da rede de acordo com a dinâmica do sinal original. Assim, introduzindo estas propriedades nas assunções originais de Boerlin et al., mostramos que é possível conceber uma rede codificante por potenciais de ação que reconstrua sinais multi-dimensionais sem a necessidade da comunicação instantânea dos mesmos.2021-09-02T12:57:55Z2021-07-01T00:00:00Z2021-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/32002engSilva, Juliana Couras Fernandesinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:01:52Zoai:ria.ua.pt:10773/32002Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:03:49.923049Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv A theory of spike coding networks with heterogeneous postsynaptic potentials
title A theory of spike coding networks with heterogeneous postsynaptic potentials
spellingShingle A theory of spike coding networks with heterogeneous postsynaptic potentials
Silva, Juliana Couras Fernandes
Neuroscience
Spike coding networks
Balanced networks
Spiking neural networks
Recurrent networks
Leaky integrate-and-fire networks
Postsynaptic potentials
title_short A theory of spike coding networks with heterogeneous postsynaptic potentials
title_full A theory of spike coding networks with heterogeneous postsynaptic potentials
title_fullStr A theory of spike coding networks with heterogeneous postsynaptic potentials
title_full_unstemmed A theory of spike coding networks with heterogeneous postsynaptic potentials
title_sort A theory of spike coding networks with heterogeneous postsynaptic potentials
author Silva, Juliana Couras Fernandes
author_facet Silva, Juliana Couras Fernandes
author_role author
dc.contributor.author.fl_str_mv Silva, Juliana Couras Fernandes
dc.subject.por.fl_str_mv Neuroscience
Spike coding networks
Balanced networks
Spiking neural networks
Recurrent networks
Leaky integrate-and-fire networks
Postsynaptic potentials
topic Neuroscience
Spike coding networks
Balanced networks
Spiking neural networks
Recurrent networks
Leaky integrate-and-fire networks
Postsynaptic potentials
description Modeling biologically realistic neural networks is a challenge for neural theory. While there is increasing evidence that the precise times of spikes play a crucial role in neural computation, building spike neural networks that resemble the spiking variability encountered in vivo while computing some function is not a trivial task. Boerlin et al. suggested a framework of leaky integrate-and-fire networks that, through excitation-inhibition tight balance, can track high-dimensional signals while producing spike trains with Poisson-like statistics. Notwithstanding their biologically plausible features, the spike coding networks rely on the instantaneous propagation of spikes to ensure an optimal function. Given that such an assumption may not fit the slower timescales of the synapses encountered in the brain this is a limitation of the model. Thus, under the goal of deriving a model with biologically plausible postsynaptic potentials, in this work, we take advantage of the spike coding networks’ ability to track high-dimensional signals to transform the problem of predictive tracking into a high-dimensional problem in the temporal domain. By doing so, we were able to get insights about the properties that such networks should have to be functional: no coding for the present time; temporal heterogeneity; prediction of the network’s estimate according to the dynamics of the signal being tracked. Then, by deriving a network from the same assumptions as Boerlin et al. while enforcing these properties it was possible to build a spike coding network that tracks multi-dimensional signals without relying on instantaneous communication of spikes.
publishDate 2021
dc.date.none.fl_str_mv 2021-09-02T12:57:55Z
2021-07-01T00:00:00Z
2021-07-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32002
url http://hdl.handle.net/10773/32002
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137693467148288