Production line fault prediction and root cause identification using neural networks and graph neural networks

Detalhes bibliográficos
Autor(a) principal: Bastos, Fábio
Data de Publicação: 2022
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/38818
Resumo: We consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions.
id RCAP_1c5e66435601353a262ff87df99270d8
oai_identifier_str oai:ria.ua.pt:10773/38818
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Production line fault prediction and root cause identification using neural networks and graph neural networksProduction line failuresRoot cause analysisNeural networksShapley valuesFeature importanceGraph neural networksHeterogeneous graphsGNNExplainerReal-time predictionMachine learningWe consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions.Considerámos o problema de previsão de falhas em linhas de produção e identificação das suas causas de raiz. As linhas de produção modernas contêm muitas etapas e integram muitas peças, materiais e máquinas. Ao mesmo tempo, sensores monitorizam cada passo e aspeto do processo, criando uma quantidade enorme de dados. Limitar anomalias de produtos e identificar as suas origens é uma consideração importante para melhorar eficiência do processo industrial, pois a análise manual não é prática. Assim, soluções automatizadas são de grande benefício a nível industrial. Aplicámos uma rede neuronal a este problema, obtendo resultados semelhantes aos obtidos usando métodos state of the art. Esta abordagem tem a vantagem de permitir uma análise de todas as variáveis. Mostrámos que os valores de Shapley podem ser usados para atribuir importância a cada uma das medições, um primeiro passo para identificar a origem de anomalias. Desenvolvemos também um modelo de Graph Neural Networks, com o objetivo de criar um modelo capaz de interpretar a natureza sequencial e heterogénea de um produto numa linha de produção. Uma abordagem computacionalmente exigente que foi testada usando um conjunto de dados limitados. Contudo, as vantagens desta abordagem são consideráveis e observáveis. Ao decompor os grafos de cada produto por origem temporal, mostrámos que previsões de anomalias são possíveis mesmo que o produto não esteja completo. Também adaptámos o modelo GNNExplainer para grafos heterogéneos, permitindo assim um cálculo direto da importância de cada nó ou mesmo de cada variável na previsão de anomalia. Estes m´métodos, com mais estudo e otimização, têm um enorme potencial para obter soluções automatizadas de análise das causas de raiz em tempo real.2023-07-19T12:20:49Z2022-12-21T00:00:00Z2022-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38818engBastos, Fábioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:15:45Zoai:ria.ua.pt:10773/38818Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:07.143015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Production line fault prediction and root cause identification using neural networks and graph neural networks
title Production line fault prediction and root cause identification using neural networks and graph neural networks
spellingShingle Production line fault prediction and root cause identification using neural networks and graph neural networks
Bastos, Fábio
Production line failures
Root cause analysis
Neural networks
Shapley values
Feature importance
Graph neural networks
Heterogeneous graphs
GNNExplainer
Real-time prediction
Machine learning
title_short Production line fault prediction and root cause identification using neural networks and graph neural networks
title_full Production line fault prediction and root cause identification using neural networks and graph neural networks
title_fullStr Production line fault prediction and root cause identification using neural networks and graph neural networks
title_full_unstemmed Production line fault prediction and root cause identification using neural networks and graph neural networks
title_sort Production line fault prediction and root cause identification using neural networks and graph neural networks
author Bastos, Fábio
author_facet Bastos, Fábio
author_role author
dc.contributor.author.fl_str_mv Bastos, Fábio
dc.subject.por.fl_str_mv Production line failures
Root cause analysis
Neural networks
Shapley values
Feature importance
Graph neural networks
Heterogeneous graphs
GNNExplainer
Real-time prediction
Machine learning
topic Production line failures
Root cause analysis
Neural networks
Shapley values
Feature importance
Graph neural networks
Heterogeneous graphs
GNNExplainer
Real-time prediction
Machine learning
description We consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions.
publishDate 2022
dc.date.none.fl_str_mv 2022-12-21T00:00:00Z
2022-12-21
2023-07-19T12:20:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/38818
url http://hdl.handle.net/10773/38818
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137742358052864