Production line fault prediction and root cause identification using neural networks and graph neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/38818 |
Resumo: | We consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions. |
id |
RCAP_1c5e66435601353a262ff87df99270d8 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/38818 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Production line fault prediction and root cause identification using neural networks and graph neural networksProduction line failuresRoot cause analysisNeural networksShapley valuesFeature importanceGraph neural networksHeterogeneous graphsGNNExplainerReal-time predictionMachine learningWe consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions.Considerámos o problema de previsão de falhas em linhas de produção e identificação das suas causas de raiz. As linhas de produção modernas contêm muitas etapas e integram muitas peças, materiais e máquinas. Ao mesmo tempo, sensores monitorizam cada passo e aspeto do processo, criando uma quantidade enorme de dados. Limitar anomalias de produtos e identificar as suas origens é uma consideração importante para melhorar eficiência do processo industrial, pois a análise manual não é prática. Assim, soluções automatizadas são de grande benefício a nível industrial. Aplicámos uma rede neuronal a este problema, obtendo resultados semelhantes aos obtidos usando métodos state of the art. Esta abordagem tem a vantagem de permitir uma análise de todas as variáveis. Mostrámos que os valores de Shapley podem ser usados para atribuir importância a cada uma das medições, um primeiro passo para identificar a origem de anomalias. Desenvolvemos também um modelo de Graph Neural Networks, com o objetivo de criar um modelo capaz de interpretar a natureza sequencial e heterogénea de um produto numa linha de produção. Uma abordagem computacionalmente exigente que foi testada usando um conjunto de dados limitados. Contudo, as vantagens desta abordagem são consideráveis e observáveis. Ao decompor os grafos de cada produto por origem temporal, mostrámos que previsões de anomalias são possíveis mesmo que o produto não esteja completo. Também adaptámos o modelo GNNExplainer para grafos heterogéneos, permitindo assim um cálculo direto da importância de cada nó ou mesmo de cada variável na previsão de anomalia. Estes m´métodos, com mais estudo e otimização, têm um enorme potencial para obter soluções automatizadas de análise das causas de raiz em tempo real.2023-07-19T12:20:49Z2022-12-21T00:00:00Z2022-12-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38818engBastos, Fábioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:15:45Zoai:ria.ua.pt:10773/38818Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:09:07.143015Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
title |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
spellingShingle |
Production line fault prediction and root cause identification using neural networks and graph neural networks Bastos, Fábio Production line failures Root cause analysis Neural networks Shapley values Feature importance Graph neural networks Heterogeneous graphs GNNExplainer Real-time prediction Machine learning |
title_short |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
title_full |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
title_fullStr |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
title_full_unstemmed |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
title_sort |
Production line fault prediction and root cause identification using neural networks and graph neural networks |
author |
Bastos, Fábio |
author_facet |
Bastos, Fábio |
author_role |
author |
dc.contributor.author.fl_str_mv |
Bastos, Fábio |
dc.subject.por.fl_str_mv |
Production line failures Root cause analysis Neural networks Shapley values Feature importance Graph neural networks Heterogeneous graphs GNNExplainer Real-time prediction Machine learning |
topic |
Production line failures Root cause analysis Neural networks Shapley values Feature importance Graph neural networks Heterogeneous graphs GNNExplainer Real-time prediction Machine learning |
description |
We consider the problem of prediction of production line failures, and identifying their root causes. Modern production lines contain many steps, and integrate many parts and materials. At the same time, sensors monitor every stage and aspect of the process. Limiting product faults, and identifying their causes is an important consideration for improving productivity and reducing costs, but manual approaches are not practical. Automated solutions would therefore be of great benefit. We applied a neural network model to this problem, which achieved results comparable to those achievable using more limited methods. This approach has the advantage of allowing further analysis beyond simple classification. We show that Shapley values can be used to ascribe feature importance, a first step to identifying the root cause of failures. We then developed a Graph Neural Network model, with the aim of producing a more directly interpretable model, as product graphs much more closely represent the interactions between real features. This approach proved to be much more computationally demanding, so that full results could only be obtained for a limited dataset. However, the advantages of this approach can already be seen. By deconstructing product graphs by timestamp, we show that partial graph predictions (representing real time situations where production is still incomplete) can give meaningful results. We also adapted the GNNExplainer model to heterogeneous graphs, allowing a direct calculation of node or feature importance in determining the outcome. These methods, if developed fully, have strong potential for automated, real time root cause analysis solutions. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-21T00:00:00Z 2022-12-21 2023-07-19T12:20:49Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38818 |
url |
http://hdl.handle.net/10773/38818 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137742358052864 |