Parking guiding system with occupation prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/20239 |
Resumo: | Parking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact. |
id |
RCAP_1cee188ed704b3ffdf08ce53c1e28e12 |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/20239 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Parking guiding system with occupation predictionParking availabilityPredictionMobile appProbabilityParking managementDisponibilidade de estacionamentoPrevisãoAplicação móvelProbabilidadeGestão de estacionamentoParking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact.A disponibilidade de estacionamento é um recurso cada vez mais escasso e caro nas grandes cidades, e este problema é considerado um dos mais críticos nos sistemas de gestão de transportes dentro de uma grande cidade. Para abordar este problema, uma prova de conceito é apresentada como uma forma de guiar um condutor para o parque de estacionamento com lugares disponíveis através de um processo de previsão usando dados passados, correlacionados com o tráfego, condições climáticas e características do período de tempo (ano, mês, dia, feriados, e assim por diante). Uma seleção de características foi realizada pelo estudo de padrões de dados, a fim de entender a afluência do estacionamento e como certas características os influenciam, bem como para compreender as mudanças repentinas na ocupação total do estacionamento e quais características realmente importam e têm um impacto sobre a ocupação total. Essas conclusões ajudaram a criar um modelo preditivo robusto e eficiente a fim de prever a taxa de disponibilidade do estacionamento com mais precisão. Três algoritmos foram usados para construir os modelos preditivos como forma de testar o mais eficiente e preciso, a saber: Gradient Boosting Machine, Decision Random Forest e Neural Networks. Foram também testados vários tipos de modelos com o objetivo de melhorar os resultados obtidos, bem como compreender o impacto de cada um dos processamentos de dados utilizados. Para complementar, foi criado um algoritmo de decisão para orientar o condutor para o parque de estacionamento mais indicado e que apresente melhores condições, tendo em conta a localização e as características do condutor, como o mais provável de ter um lugar de estacionamento disponível, mais próximo da posição atual do utilizador ou um preço mais atrativo para o condutor. Finalmente, estes desenvolvimentos são integrados numa aplicação móvel de forma a que o utilizador consiga aceder através de uma interface.2020-03-27T11:49:21Z2019-10-23T00:00:00Z2019-10-232019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/20239TID:202461262engAlface, Gonçalo Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:44:56Zoai:repositorio.iscte-iul.pt:10071/20239Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:22.713779Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Parking guiding system with occupation prediction |
title |
Parking guiding system with occupation prediction |
spellingShingle |
Parking guiding system with occupation prediction Alface, Gonçalo Pereira Parking availability Prediction Mobile app Probability Parking management Disponibilidade de estacionamento Previsão Aplicação móvel Probabilidade Gestão de estacionamento |
title_short |
Parking guiding system with occupation prediction |
title_full |
Parking guiding system with occupation prediction |
title_fullStr |
Parking guiding system with occupation prediction |
title_full_unstemmed |
Parking guiding system with occupation prediction |
title_sort |
Parking guiding system with occupation prediction |
author |
Alface, Gonçalo Pereira |
author_facet |
Alface, Gonçalo Pereira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alface, Gonçalo Pereira |
dc.subject.por.fl_str_mv |
Parking availability Prediction Mobile app Probability Parking management Disponibilidade de estacionamento Previsão Aplicação móvel Probabilidade Gestão de estacionamento |
topic |
Parking availability Prediction Mobile app Probability Parking management Disponibilidade de estacionamento Previsão Aplicação móvel Probabilidade Gestão de estacionamento |
description |
Parking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-23T00:00:00Z 2019-10-23 2019-09 2020-03-27T11:49:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/20239 TID:202461262 |
url |
http://hdl.handle.net/10071/20239 |
identifier_str_mv |
TID:202461262 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134774745366528 |