Parking guiding system with occupation prediction

Detalhes bibliográficos
Autor(a) principal: Alface, Gonçalo Pereira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/20239
Resumo: Parking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact.
id RCAP_1cee188ed704b3ffdf08ce53c1e28e12
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/20239
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Parking guiding system with occupation predictionParking availabilityPredictionMobile appProbabilityParking managementDisponibilidade de estacionamentoPrevisãoAplicação móvelProbabilidadeGestão de estacionamentoParking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact.A disponibilidade de estacionamento é um recurso cada vez mais escasso e caro nas grandes cidades, e este problema é considerado um dos mais críticos nos sistemas de gestão de transportes dentro de uma grande cidade. Para abordar este problema, uma prova de conceito é apresentada como uma forma de guiar um condutor para o parque de estacionamento com lugares disponíveis através de um processo de previsão usando dados passados, correlacionados com o tráfego, condições climáticas e características do período de tempo (ano, mês, dia, feriados, e assim por diante). Uma seleção de características foi realizada pelo estudo de padrões de dados, a fim de entender a afluência do estacionamento e como certas características os influenciam, bem como para compreender as mudanças repentinas na ocupação total do estacionamento e quais características realmente importam e têm um impacto sobre a ocupação total. Essas conclusões ajudaram a criar um modelo preditivo robusto e eficiente a fim de prever a taxa de disponibilidade do estacionamento com mais precisão. Três algoritmos foram usados para construir os modelos preditivos como forma de testar o mais eficiente e preciso, a saber: Gradient Boosting Machine, Decision Random Forest e Neural Networks. Foram também testados vários tipos de modelos com o objetivo de melhorar os resultados obtidos, bem como compreender o impacto de cada um dos processamentos de dados utilizados. Para complementar, foi criado um algoritmo de decisão para orientar o condutor para o parque de estacionamento mais indicado e que apresente melhores condições, tendo em conta a localização e as características do condutor, como o mais provável de ter um lugar de estacionamento disponível, mais próximo da posição atual do utilizador ou um preço mais atrativo para o condutor. Finalmente, estes desenvolvimentos são integrados numa aplicação móvel de forma a que o utilizador consiga aceder através de uma interface.2020-03-27T11:49:21Z2019-10-23T00:00:00Z2019-10-232019-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/20239TID:202461262engAlface, Gonçalo Pereirainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:44:56Zoai:repositorio.iscte-iul.pt:10071/20239Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:21:22.713779Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Parking guiding system with occupation prediction
title Parking guiding system with occupation prediction
spellingShingle Parking guiding system with occupation prediction
Alface, Gonçalo Pereira
Parking availability
Prediction
Mobile app
Probability
Parking management
Disponibilidade de estacionamento
Previsão
Aplicação móvel
Probabilidade
Gestão de estacionamento
title_short Parking guiding system with occupation prediction
title_full Parking guiding system with occupation prediction
title_fullStr Parking guiding system with occupation prediction
title_full_unstemmed Parking guiding system with occupation prediction
title_sort Parking guiding system with occupation prediction
author Alface, Gonçalo Pereira
author_facet Alface, Gonçalo Pereira
author_role author
dc.contributor.author.fl_str_mv Alface, Gonçalo Pereira
dc.subject.por.fl_str_mv Parking availability
Prediction
Mobile app
Probability
Parking management
Disponibilidade de estacionamento
Previsão
Aplicação móvel
Probabilidade
Gestão de estacionamento
topic Parking availability
Prediction
Mobile app
Probability
Parking management
Disponibilidade de estacionamento
Previsão
Aplicação móvel
Probabilidade
Gestão de estacionamento
description Parking availability is an increasingly scarce and expensive resource within large cities, and this problem is considered to be one of the most critical transportation management system inside a big city. To approach this problem a proof of concept is presented as a way to guide a driver to the possible free parking lot through a prediction process using past data, correlated with traffic, weather conditions and time period features (year, month, day, holidays, and so on). A feature selection was performed by the study of data patterns, in order to understand the parking lot affluence and how certain features influence them, as well as to comprehend the sudden changes in the total occupation of the parking lot and which features really matter and have an impact on the total occupation. Those conclusions helped to create a robust and efficient predictive model in order to predict the parking lot availability rate more accurately. Three algorithms were used to build the predictive models as a way to test the most efficient and accurate one, namely Gradient Boosting Machine, Decision Random Forest and Neural Networks. Various types of models were tested with the aim of improving the results obtained, as well as understanding the impact of each of the processing of the data used. To complement this, a decision algorithm was created to guide the driver to the most optimal parking lot that presents better conditions, taking into account the location and driver characteristics, like the park more likely to have an available parking space, closer to the user’s current position or a more attractive price for the driver. Finally, these developments are integrated into a mobile application in order to work like an interface that the driver can interact.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-23T00:00:00Z
2019-10-23
2019-09
2020-03-27T11:49:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/20239
TID:202461262
url http://hdl.handle.net/10071/20239
identifier_str_mv TID:202461262
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134774745366528