Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles

Detalhes bibliográficos
Autor(a) principal: Barros, Joana
Data de Publicação: 2017
Outros Autores: Grenho, Liliana, Fontenente, Sílvia, Manuel, Cândida M., Nunes, Olga C., Melo, Luís F., Monteiro, Fernando J., Ferraz, Maria Pia
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10284/7836
Resumo: Implant-associated infections are caused by surface-adhering microorganisms persisting as biofilms, resistant to host defense and antimicrobial agents. Given the limited efficacy of traditional antibiotics, novel strategies may rely on the prevention of such infections through the design of new biomaterials. In this work, two antimicrobial agents applied to nanohydroxyapatite materials-namely, chlorhexidine digluconate (CHX) and zinc oxide (ZnO) nanoparticles-were compared concerning their ability to avoid single- or dual-species biofilms of Staphylococcus aureus and Escherichia coli. The resulting biofilms were quantified by the enumeration of colony-forming units and examined by confocal microscopy using both Live/Dead staining and bacterial-specific fluorescent in situ hybridization. The sessile population arrangement was also observed by scanning electron microscopy. Both biomaterials showed to be effective in impairing bacterial adhesion and proliferation for either single- or dual-species biofilms. Furthermore, a competitive interaction was observed for dual-species biofilms wherein E. coli exhibited higher proliferative capacity than S. aureus, an inverse behavior from the one observed in single-species biofilms. Therefore, either nanoHA-CHX or nanoHA-ZnO surfaces appear as promising alternatives to antibiotics for the prevention of devices-related infections avoiding the critical risk of antibiotic-resistant strains emergence. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 491-497, 2017.
id RCAP_1dbceab7fc6940cebd7b1afa24864f52
oai_identifier_str oai:bdigital.ufp.pt:10284/7836
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticlesBiofilmsChlorhexidineEscherichia coliNanoparticlesStaphylococcus aureusDurapatiteZinc OxideImplant-associated infections are caused by surface-adhering microorganisms persisting as biofilms, resistant to host defense and antimicrobial agents. Given the limited efficacy of traditional antibiotics, novel strategies may rely on the prevention of such infections through the design of new biomaterials. In this work, two antimicrobial agents applied to nanohydroxyapatite materials-namely, chlorhexidine digluconate (CHX) and zinc oxide (ZnO) nanoparticles-were compared concerning their ability to avoid single- or dual-species biofilms of Staphylococcus aureus and Escherichia coli. The resulting biofilms were quantified by the enumeration of colony-forming units and examined by confocal microscopy using both Live/Dead staining and bacterial-specific fluorescent in situ hybridization. The sessile population arrangement was also observed by scanning electron microscopy. Both biomaterials showed to be effective in impairing bacterial adhesion and proliferation for either single- or dual-species biofilms. Furthermore, a competitive interaction was observed for dual-species biofilms wherein E. coli exhibited higher proliferative capacity than S. aureus, an inverse behavior from the one observed in single-species biofilms. Therefore, either nanoHA-CHX or nanoHA-ZnO surfaces appear as promising alternatives to antibiotics for the prevention of devices-related infections avoiding the critical risk of antibiotic-resistant strains emergence. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 491-497, 2017.Repositório Institucional da Universidade Fernando PessoaBarros, JoanaGrenho, LilianaFontenente, SílviaManuel, Cândida M.Nunes, Olga C.Melo, Luís F.Monteiro, Fernando J.Ferraz, Maria Pia2017-01-01T00:00:00Z2017-01-01T00:00:00Z2025-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10284/7836eng10.1002/jbm.a.35925info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-09-06T02:07:12Zoai:bdigital.ufp.pt:10284/7836Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T15:44:44.494704Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
title Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
spellingShingle Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
Barros, Joana
Biofilms
Chlorhexidine
Escherichia coli
Nanoparticles
Staphylococcus aureus
Durapatite
Zinc Oxide
title_short Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
title_full Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
title_fullStr Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
title_full_unstemmed Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
title_sort Staphylococcus aureusandEscherichia colidual-species biofilms on nanohydroxyapatite loaded with CHX or ZnO nanoparticles
author Barros, Joana
author_facet Barros, Joana
Grenho, Liliana
Fontenente, Sílvia
Manuel, Cândida M.
Nunes, Olga C.
Melo, Luís F.
Monteiro, Fernando J.
Ferraz, Maria Pia
author_role author
author2 Grenho, Liliana
Fontenente, Sílvia
Manuel, Cândida M.
Nunes, Olga C.
Melo, Luís F.
Monteiro, Fernando J.
Ferraz, Maria Pia
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Repositório Institucional da Universidade Fernando Pessoa
dc.contributor.author.fl_str_mv Barros, Joana
Grenho, Liliana
Fontenente, Sílvia
Manuel, Cândida M.
Nunes, Olga C.
Melo, Luís F.
Monteiro, Fernando J.
Ferraz, Maria Pia
dc.subject.por.fl_str_mv Biofilms
Chlorhexidine
Escherichia coli
Nanoparticles
Staphylococcus aureus
Durapatite
Zinc Oxide
topic Biofilms
Chlorhexidine
Escherichia coli
Nanoparticles
Staphylococcus aureus
Durapatite
Zinc Oxide
description Implant-associated infections are caused by surface-adhering microorganisms persisting as biofilms, resistant to host defense and antimicrobial agents. Given the limited efficacy of traditional antibiotics, novel strategies may rely on the prevention of such infections through the design of new biomaterials. In this work, two antimicrobial agents applied to nanohydroxyapatite materials-namely, chlorhexidine digluconate (CHX) and zinc oxide (ZnO) nanoparticles-were compared concerning their ability to avoid single- or dual-species biofilms of Staphylococcus aureus and Escherichia coli. The resulting biofilms were quantified by the enumeration of colony-forming units and examined by confocal microscopy using both Live/Dead staining and bacterial-specific fluorescent in situ hybridization. The sessile population arrangement was also observed by scanning electron microscopy. Both biomaterials showed to be effective in impairing bacterial adhesion and proliferation for either single- or dual-species biofilms. Furthermore, a competitive interaction was observed for dual-species biofilms wherein E. coli exhibited higher proliferative capacity than S. aureus, an inverse behavior from the one observed in single-species biofilms. Therefore, either nanoHA-CHX or nanoHA-ZnO surfaces appear as promising alternatives to antibiotics for the prevention of devices-related infections avoiding the critical risk of antibiotic-resistant strains emergence. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 491-497, 2017.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01T00:00:00Z
2017-01-01T00:00:00Z
2025-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10284/7836
url http://hdl.handle.net/10284/7836
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1002/jbm.a.35925
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799130313717186560