CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/35747 |
Resumo: | Periodic mesoporous organosilicas (PMO) were proposed as potential adsorbents for CO2/CH4 adsorption-separation due to their strong interactions with CO2 and low affinity for CH4. Herewith, we present a comprehensive density functional theory (DFT) study about the binding properties of CO2 and CH4 with the pore walls of different PMO materials. The calculations considered the M06−2X DFT exchange-correlation functional, and cluster models of the walls of the PMO materials with organic bridges based on phenylene (Ph-), biphenylene (Bph-), pyridine (Py-) and bipyridine (Bpy-) fragments or on mixtures of Ph/Py- and Bph/Bpy- moieties. All materials showed stronger interactions with CO2 than with CH4, which suggests they are potentially selective for CO2 over CH4. From the calculated data it is demonstrated that the PMO materials with phenylene moieties establish more favorable contacts with CO2 than those found in their counterparts with bridges based on the homologous heteroaromatic nitrogen compounds, viz. pyridine. Independently of the size of the organic bridge, both phenylene- and biphenylene- PMO materials showed similar CO2 adsorption behavior. The presence of bipyridine-bridges improved the CO2 adsorption behavior only when mixed with biphenylene moieties. The adsorption behavior of CO2 gas can be directly related to the SiOH···OCO distance, i.e., the adsorption strength increases with the decrease of this distance. In the case of the CH4 adsorption, the least favorable adsorptions were determined for PMO materials with pyridine and phenylene/pyridine bridges. |
id |
RCAP_1f47d449be29f77f8a11f8ded9816326 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/35747 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT studyCO2 and CH4 adsorptionPeriodic mesoporous organosilicasDensity Functional TheoryCluster modelsPeriodic mesoporous organosilicas (PMO) were proposed as potential adsorbents for CO2/CH4 adsorption-separation due to their strong interactions with CO2 and low affinity for CH4. Herewith, we present a comprehensive density functional theory (DFT) study about the binding properties of CO2 and CH4 with the pore walls of different PMO materials. The calculations considered the M06−2X DFT exchange-correlation functional, and cluster models of the walls of the PMO materials with organic bridges based on phenylene (Ph-), biphenylene (Bph-), pyridine (Py-) and bipyridine (Bpy-) fragments or on mixtures of Ph/Py- and Bph/Bpy- moieties. All materials showed stronger interactions with CO2 than with CH4, which suggests they are potentially selective for CO2 over CH4. From the calculated data it is demonstrated that the PMO materials with phenylene moieties establish more favorable contacts with CO2 than those found in their counterparts with bridges based on the homologous heteroaromatic nitrogen compounds, viz. pyridine. Independently of the size of the organic bridge, both phenylene- and biphenylene- PMO materials showed similar CO2 adsorption behavior. The presence of bipyridine-bridges improved the CO2 adsorption behavior only when mixed with biphenylene moieties. The adsorption behavior of CO2 gas can be directly related to the SiOH···OCO distance, i.e., the adsorption strength increases with the decrease of this distance. In the case of the CH4 adsorption, the least favorable adsorptions were determined for PMO materials with pyridine and phenylene/pyridine bridges.Elsevier2023-03-01T00:00:00Z2021-03-01T00:00:00Z2021-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/35747eng2352-492810.1016/j.mtcomm.2021.102088Lourenço, Mirtha A.O.Ferreira, PaulaGomes, José R.B.info:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:08:30Zoai:ria.ua.pt:10773/35747Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:06:33.710704Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
title |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
spellingShingle |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study Lourenço, Mirtha A.O. CO2 and CH4 adsorption Periodic mesoporous organosilicas Density Functional Theory Cluster models |
title_short |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
title_full |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
title_fullStr |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
title_full_unstemmed |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
title_sort |
CO2 and CH4 adsorption on periodic mesoporous organosilica: A DFT study |
author |
Lourenço, Mirtha A.O. |
author_facet |
Lourenço, Mirtha A.O. Ferreira, Paula Gomes, José R.B. |
author_role |
author |
author2 |
Ferreira, Paula Gomes, José R.B. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lourenço, Mirtha A.O. Ferreira, Paula Gomes, José R.B. |
dc.subject.por.fl_str_mv |
CO2 and CH4 adsorption Periodic mesoporous organosilicas Density Functional Theory Cluster models |
topic |
CO2 and CH4 adsorption Periodic mesoporous organosilicas Density Functional Theory Cluster models |
description |
Periodic mesoporous organosilicas (PMO) were proposed as potential adsorbents for CO2/CH4 adsorption-separation due to their strong interactions with CO2 and low affinity for CH4. Herewith, we present a comprehensive density functional theory (DFT) study about the binding properties of CO2 and CH4 with the pore walls of different PMO materials. The calculations considered the M06−2X DFT exchange-correlation functional, and cluster models of the walls of the PMO materials with organic bridges based on phenylene (Ph-), biphenylene (Bph-), pyridine (Py-) and bipyridine (Bpy-) fragments or on mixtures of Ph/Py- and Bph/Bpy- moieties. All materials showed stronger interactions with CO2 than with CH4, which suggests they are potentially selective for CO2 over CH4. From the calculated data it is demonstrated that the PMO materials with phenylene moieties establish more favorable contacts with CO2 than those found in their counterparts with bridges based on the homologous heteroaromatic nitrogen compounds, viz. pyridine. Independently of the size of the organic bridge, both phenylene- and biphenylene- PMO materials showed similar CO2 adsorption behavior. The presence of bipyridine-bridges improved the CO2 adsorption behavior only when mixed with biphenylene moieties. The adsorption behavior of CO2 gas can be directly related to the SiOH···OCO distance, i.e., the adsorption strength increases with the decrease of this distance. In the case of the CH4 adsorption, the least favorable adsorptions were determined for PMO materials with pyridine and phenylene/pyridine bridges. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-01T00:00:00Z 2021-03 2023-03-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/35747 |
url |
http://hdl.handle.net/10773/35747 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2352-4928 10.1016/j.mtcomm.2021.102088 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137720758435840 |