Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/43093 |
Resumo: | [ENG] Global warming, caused mostly by the increasing of greenhouse gas concentrations in the atmosphere, has became one of the most serious environmental concerns. Between the major greenhouse gases, carbon dioxide had the most significant increase. Its high availability, non-flammability, low toxicity and independency from the food supply chain, makes CO2 utilization as a carbon feedstock an important topic from both industrial and academic perspectives. The aim of this work was to develop process intensification strategies for cyclic carbonate production from CO2 and epoxides. Cyclic carbonates are versatile molecules which may become a future platform to introduce CO2 as a renewable carbon feedstock into the chemical sector. Indeed, cyclic carbonates find use in a wide range of applications as electrolytes for lithium batteries, polar aprotic solvents, pharmaceutical intermediates and also as monomers in polymer production. For the first time, zinc (II) complexes of arylhydrazones of β-diketones (AHBD) combined with ionic liquids were used as catalysts for the production of cyclic carbonates. Different cation and anion families were explored in order to understand the effect of specific functional groups on the final reaction yield and selectivity. Results confirmed the importance of the nucleophilicity of the anion, with halogens presenting the better results. Regarding the cation structure, it was possible to conclude that the bulkiness of the structure was the more important factor to have in consideration. Also the effects of pressure, temperature, type of solvent and catalyst concentration were studied and a high-pressure extraction process for an efficient product separation and recycling of the catalytic system was proposed. Finally, in the context of developing a green continuous flow process for CO2 conversion into cyclic carbonates, two different engineering approaches were investigated. On one hand a supported ionic liquid onto an alginate aerogel matrix was prepared, characterized and applied as catalytic system. On the other hand, a continuous flow process using a bulk ionic liquid phase as catalyst was carried out. Both processes allowed for cyclic carbonate production from a bio-based epoxide (limonene oxide) in the production of limonene carbonate, a 100% renewable cyclic carbonate. This thesis provides new opportunities for cyclic carbonate production from CO2 and epoxides in the context of sustainable processing. |
id |
RCAP_1f5cbc97a39df266b62845dac09f1c67 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/43093 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2Carbon DioxideCarbonatesGreen ChemistryEpoxidesSupercriticalIonic LiquidsBio-based epoxidesCatalystAerogelContinuous FlowDióxido de CarbonoCarbonatosQuímica VerdeEpóxidosSupercríticoLíquidos IónicosEpóxidos bio-renováveisCatalisadorAerogelProcesso ContinuoDomínio/Área Científica::Engenharia e Tecnologia[ENG] Global warming, caused mostly by the increasing of greenhouse gas concentrations in the atmosphere, has became one of the most serious environmental concerns. Between the major greenhouse gases, carbon dioxide had the most significant increase. Its high availability, non-flammability, low toxicity and independency from the food supply chain, makes CO2 utilization as a carbon feedstock an important topic from both industrial and academic perspectives. The aim of this work was to develop process intensification strategies for cyclic carbonate production from CO2 and epoxides. Cyclic carbonates are versatile molecules which may become a future platform to introduce CO2 as a renewable carbon feedstock into the chemical sector. Indeed, cyclic carbonates find use in a wide range of applications as electrolytes for lithium batteries, polar aprotic solvents, pharmaceutical intermediates and also as monomers in polymer production. For the first time, zinc (II) complexes of arylhydrazones of β-diketones (AHBD) combined with ionic liquids were used as catalysts for the production of cyclic carbonates. Different cation and anion families were explored in order to understand the effect of specific functional groups on the final reaction yield and selectivity. Results confirmed the importance of the nucleophilicity of the anion, with halogens presenting the better results. Regarding the cation structure, it was possible to conclude that the bulkiness of the structure was the more important factor to have in consideration. Also the effects of pressure, temperature, type of solvent and catalyst concentration were studied and a high-pressure extraction process for an efficient product separation and recycling of the catalytic system was proposed. Finally, in the context of developing a green continuous flow process for CO2 conversion into cyclic carbonates, two different engineering approaches were investigated. On one hand a supported ionic liquid onto an alginate aerogel matrix was prepared, characterized and applied as catalytic system. On the other hand, a continuous flow process using a bulk ionic liquid phase as catalyst was carried out. Both processes allowed for cyclic carbonate production from a bio-based epoxide (limonene oxide) in the production of limonene carbonate, a 100% renewable cyclic carbonate. This thesis provides new opportunities for cyclic carbonate production from CO2 and epoxides in the context of sustainable processing.[PT] O aquecimento global provocado principalmente pelo aumento das concentrações de gases de efeito estufa na atmosfera tornou-se numa das mais sérias preocupações em termos ambientais. Entre os principais gases responsáveis pelo efeito de estufa, temos o dióxido de carbono. Pelo facto de estar bastante disponível, de ser não inflamável, ter baixa toxicidade e devido a sua independência em relação a cadeia alimentar, o uso do CO2 como matéria-prima tem vindo a ganhar muita atenção quer do ponto de vista industrial e quer académico. O objetivo deste trabalho consiste no desenvolvimento de estratégias de intensificação do processo responsável pela produção de carbonatos cíclicos a partir da reação de epóxidos com CO2. Por sua vez, os carbonatos cíclicos produzidos tem várias aplicações, podem ser utilizados como eletrólitos nas baterias de lítio, como intermediários farmacêuticos e também como monómeros para a produção de polímeros. Pela primeira vez, complexos de zinco (II) de arilhidrazonas de -dicetonas combinados com líquidos iónicos foram utilizados como catalisadores na produção de carbonatos cíclicos. Diferentes famílias de aniões e catiões foram estudadas, com o objetivo de compreender o efeito destes grupos funcionais na selectividade e no rendimento final da reação. Os resultados confirmaram a importância da nucleofilicidade do anião, com os iões de halogénios a apresentar os melhores resultados. Preservando à estrutura de catião, foi possível concluir que o tamanho da estrutura era o fator mais importante a ter em consideração. O efeito da pressão, temperatura, tipo de solvente e catalisador foram alguns dos parâmetros estudados, adicionalmente um processo de extração a alta pressão foi proposto como forma eficiente de separação do produto final e reutilização do catalisador. Finalmente, com o objetivo de desenvolver uma tecnologia verde na conversão de CO2 em carbonatos cíclicos duas diferentes abordagens, em termos de engenharia, foram investigadas. Primeiro, foi preparado e devidamente caracterizado um catalisador suportado, composto por uma matriz de aerogéis de alginato, para posteriormente ser testado com sistema catalítico. Segundo, foi explorada a possibilidade de realizar esta reação em modo contínuo, utilizando com líquidos iónicos em “bulk” com catalisadores. Em ambos os processos foi possível a produção de carbonatos cíclicos a partir de um epóxido proveniente de recursos naturais (óxido de limoneno) produzindo assim carbonato de limoneno, um carbonato 100% bio-renovável. Esta tese fornece novas oportunidades para aumentar a produtividade do processo de produção de carbonatos cíclicos a partir do CO2.Doctoral fellowship PD/BD/52497/2014, FCT/MEC (UID/QUI/50006/2013), ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER - 007265), project EXPL/QEQ-ERQ/2243/2013, project “Sun Storage – Harvesting and storage of solar energy”, reference POCI-01-0145-FEDER-016387, FCT (RECI/BBB-BQB/0230/2012) e AQUA-CO2NV ENE2014-53459-R.Nunes, Ana V. M.Ponte, Manuel Nunes daRUNPaninho, Ana Inês Brandão2020-07-04T00:30:32Z2018-07-042018-07-04T00:00:00Zdoctoral thesisinfo:eu-repo/semantics/publishedVersionapplication/pdfhttp://hdl.handle.net/10362/43093TID:101615841enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-22T17:34:13Zoai:run.unl.pt:10362/43093Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-22T17:34:13Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
title |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
spellingShingle |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 Paninho, Ana Inês Brandão Carbon Dioxide Carbonates Green Chemistry Epoxides Supercritical Ionic Liquids Bio-based epoxides Catalyst Aerogel Continuous Flow Dióxido de Carbono Carbonatos Química Verde Epóxidos Supercrítico Líquidos Iónicos Epóxidos bio-renováveis Catalisador Aerogel Processo Continuo Domínio/Área Científica::Engenharia e Tecnologia |
title_short |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
title_full |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
title_fullStr |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
title_full_unstemmed |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
title_sort |
Sustainable Intensification Strategies for the Production of Cyclic Carbonates from CO2 |
author |
Paninho, Ana Inês Brandão |
author_facet |
Paninho, Ana Inês Brandão |
author_role |
author |
dc.contributor.none.fl_str_mv |
Nunes, Ana V. M. Ponte, Manuel Nunes da RUN |
dc.contributor.author.fl_str_mv |
Paninho, Ana Inês Brandão |
dc.subject.por.fl_str_mv |
Carbon Dioxide Carbonates Green Chemistry Epoxides Supercritical Ionic Liquids Bio-based epoxides Catalyst Aerogel Continuous Flow Dióxido de Carbono Carbonatos Química Verde Epóxidos Supercrítico Líquidos Iónicos Epóxidos bio-renováveis Catalisador Aerogel Processo Continuo Domínio/Área Científica::Engenharia e Tecnologia |
topic |
Carbon Dioxide Carbonates Green Chemistry Epoxides Supercritical Ionic Liquids Bio-based epoxides Catalyst Aerogel Continuous Flow Dióxido de Carbono Carbonatos Química Verde Epóxidos Supercrítico Líquidos Iónicos Epóxidos bio-renováveis Catalisador Aerogel Processo Continuo Domínio/Área Científica::Engenharia e Tecnologia |
description |
[ENG] Global warming, caused mostly by the increasing of greenhouse gas concentrations in the atmosphere, has became one of the most serious environmental concerns. Between the major greenhouse gases, carbon dioxide had the most significant increase. Its high availability, non-flammability, low toxicity and independency from the food supply chain, makes CO2 utilization as a carbon feedstock an important topic from both industrial and academic perspectives. The aim of this work was to develop process intensification strategies for cyclic carbonate production from CO2 and epoxides. Cyclic carbonates are versatile molecules which may become a future platform to introduce CO2 as a renewable carbon feedstock into the chemical sector. Indeed, cyclic carbonates find use in a wide range of applications as electrolytes for lithium batteries, polar aprotic solvents, pharmaceutical intermediates and also as monomers in polymer production. For the first time, zinc (II) complexes of arylhydrazones of β-diketones (AHBD) combined with ionic liquids were used as catalysts for the production of cyclic carbonates. Different cation and anion families were explored in order to understand the effect of specific functional groups on the final reaction yield and selectivity. Results confirmed the importance of the nucleophilicity of the anion, with halogens presenting the better results. Regarding the cation structure, it was possible to conclude that the bulkiness of the structure was the more important factor to have in consideration. Also the effects of pressure, temperature, type of solvent and catalyst concentration were studied and a high-pressure extraction process for an efficient product separation and recycling of the catalytic system was proposed. Finally, in the context of developing a green continuous flow process for CO2 conversion into cyclic carbonates, two different engineering approaches were investigated. On one hand a supported ionic liquid onto an alginate aerogel matrix was prepared, characterized and applied as catalytic system. On the other hand, a continuous flow process using a bulk ionic liquid phase as catalyst was carried out. Both processes allowed for cyclic carbonate production from a bio-based epoxide (limonene oxide) in the production of limonene carbonate, a 100% renewable cyclic carbonate. This thesis provides new opportunities for cyclic carbonate production from CO2 and epoxides in the context of sustainable processing. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07-04 2018-07-04T00:00:00Z 2020-07-04T00:30:32Z |
dc.type.driver.fl_str_mv |
doctoral thesis |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/43093 TID:101615841 |
url |
http://hdl.handle.net/10362/43093 |
identifier_str_mv |
TID:101615841 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817545651134660608 |