On the Krall-type discrete polynomials

Detalhes bibliográficos
Autor(a) principal: Álvarez-Nodarse, R.
Data de Publicação: 2004
Outros Autores: Petronilho, J.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/4636
https://doi.org/10.1016/j.jmaa.2004.02.042
Resumo: In this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of q-Krall polynomials are considered in detail.
id RCAP_1fd15d9f6e08297efac7f389b5a65b58
oai_identifier_str oai:estudogeral.uc.pt:10316/4636
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling On the Krall-type discrete polynomialsQuasi-definite linear functionalsClassical discrete polynomialsq-polynomialsKrall-type polynomialsOrthogonal polynomialsAddition of delta Dirac massesIn this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of q-Krall polynomials are considered in detail.http://www.sciencedirect.com/science/article/B6WK2-4CC2YF9-1/1/1bbcf94cc1184e679b497c3b8e754b292004info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleaplication/PDFhttp://hdl.handle.net/10316/4636http://hdl.handle.net/10316/4636https://doi.org/10.1016/j.jmaa.2004.02.042engJournal of Mathematical Analysis and Applications. 295:1 (2004) 55-69Álvarez-Nodarse, R.Petronilho, J.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-11-06T16:49:11Zoai:estudogeral.uc.pt:10316/4636Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:40.470061Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv On the Krall-type discrete polynomials
title On the Krall-type discrete polynomials
spellingShingle On the Krall-type discrete polynomials
Álvarez-Nodarse, R.
Quasi-definite linear functionals
Classical discrete polynomials
q-polynomials
Krall-type polynomials
Orthogonal polynomials
Addition of delta Dirac masses
title_short On the Krall-type discrete polynomials
title_full On the Krall-type discrete polynomials
title_fullStr On the Krall-type discrete polynomials
title_full_unstemmed On the Krall-type discrete polynomials
title_sort On the Krall-type discrete polynomials
author Álvarez-Nodarse, R.
author_facet Álvarez-Nodarse, R.
Petronilho, J.
author_role author
author2 Petronilho, J.
author2_role author
dc.contributor.author.fl_str_mv Álvarez-Nodarse, R.
Petronilho, J.
dc.subject.por.fl_str_mv Quasi-definite linear functionals
Classical discrete polynomials
q-polynomials
Krall-type polynomials
Orthogonal polynomials
Addition of delta Dirac masses
topic Quasi-definite linear functionals
Classical discrete polynomials
q-polynomials
Krall-type polynomials
Orthogonal polynomials
Addition of delta Dirac masses
description In this paper we present a unified theory for studying the so-called Krall-type discrete orthogonal polynomials. In particular, the three-term recurrence relation, lowering and raising operators as well as the second order linear difference equation that the sequences of monic orthogonal polynomials satisfy are established. Some relevant examples of q-Krall polynomials are considered in detail.
publishDate 2004
dc.date.none.fl_str_mv 2004
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/4636
http://hdl.handle.net/10316/4636
https://doi.org/10.1016/j.jmaa.2004.02.042
url http://hdl.handle.net/10316/4636
https://doi.org/10.1016/j.jmaa.2004.02.042
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Mathematical Analysis and Applications. 295:1 (2004) 55-69
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv aplication/PDF
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133897107177472