An operational method to solve fractional differential equations

Detalhes bibliográficos
Autor(a) principal: Rodrigues, M. M.
Data de Publicação: 2014
Outros Autores: Vieira, N.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/18647
Resumo: In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem.
id RCAP_20710da355e9cc8a5b3c29dd46610062
oai_identifier_str oai:ria.ua.pt:10773/18647
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling An operational method to solve fractional differential equationsRiemann-Liouville and Caputo derivativesFractional differential equationsFractional Laguerre differential equationMellin and Laplace transformsIn this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem.Seenith Sivasundaram2017-10-26T10:02:06Z2014-12-01T00:00:00Z2014-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18647eng1551-761610.1063/1.4904690Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:35:58Zoai:ria.ua.pt:10773/18647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:53:32.786731Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv An operational method to solve fractional differential equations
title An operational method to solve fractional differential equations
spellingShingle An operational method to solve fractional differential equations
Rodrigues, M. M.
Riemann-Liouville and Caputo derivatives
Fractional differential equations
Fractional Laguerre differential equation
Mellin and Laplace transforms
title_short An operational method to solve fractional differential equations
title_full An operational method to solve fractional differential equations
title_fullStr An operational method to solve fractional differential equations
title_full_unstemmed An operational method to solve fractional differential equations
title_sort An operational method to solve fractional differential equations
author Rodrigues, M. M.
author_facet Rodrigues, M. M.
Vieira, N.
author_role author
author2 Vieira, N.
author2_role author
dc.contributor.author.fl_str_mv Rodrigues, M. M.
Vieira, N.
dc.subject.por.fl_str_mv Riemann-Liouville and Caputo derivatives
Fractional differential equations
Fractional Laguerre differential equation
Mellin and Laplace transforms
topic Riemann-Liouville and Caputo derivatives
Fractional differential equations
Fractional Laguerre differential equation
Mellin and Laplace transforms
description In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-01T00:00:00Z
2014-12
2017-10-26T10:02:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/18647
url http://hdl.handle.net/10773/18647
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1551-7616
10.1063/1.4904690
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Seenith Sivasundaram
publisher.none.fl_str_mv Seenith Sivasundaram
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137587089113088