An operational method to solve fractional differential equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/18647 |
Resumo: | In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem. |
id |
RCAP_20710da355e9cc8a5b3c29dd46610062 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/18647 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
An operational method to solve fractional differential equationsRiemann-Liouville and Caputo derivativesFractional differential equationsFractional Laguerre differential equationMellin and Laplace transformsIn this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem.Seenith Sivasundaram2017-10-26T10:02:06Z2014-12-01T00:00:00Z2014-12info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/18647eng1551-761610.1063/1.4904690Rodrigues, M. M.Vieira, N.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:35:58Zoai:ria.ua.pt:10773/18647Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:53:32.786731Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
An operational method to solve fractional differential equations |
title |
An operational method to solve fractional differential equations |
spellingShingle |
An operational method to solve fractional differential equations Rodrigues, M. M. Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
title_short |
An operational method to solve fractional differential equations |
title_full |
An operational method to solve fractional differential equations |
title_fullStr |
An operational method to solve fractional differential equations |
title_full_unstemmed |
An operational method to solve fractional differential equations |
title_sort |
An operational method to solve fractional differential equations |
author |
Rodrigues, M. M. |
author_facet |
Rodrigues, M. M. Vieira, N. |
author_role |
author |
author2 |
Vieira, N. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Rodrigues, M. M. Vieira, N. |
dc.subject.por.fl_str_mv |
Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
topic |
Riemann-Liouville and Caputo derivatives Fractional differential equations Fractional Laguerre differential equation Mellin and Laplace transforms |
description |
In this paper, we present an operational method for solving two fractional equations, namely, the Legendre and the Laguerre equations. Based on operational approach for the Laplace and Mellin, we obtain a particular solution as a generalized power series for both equations, where the fractional derivatives are defined in the Riemann-Liouville sense. We prove the existence and uniqueness of solutions via Banach fix point theorem. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12-01T00:00:00Z 2014-12 2017-10-26T10:02:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/18647 |
url |
http://hdl.handle.net/10773/18647 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1551-7616 10.1063/1.4904690 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Seenith Sivasundaram |
publisher.none.fl_str_mv |
Seenith Sivasundaram |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137587089113088 |