Linear fractional differential equations and eigenfunctions of fractional differential operators

Detalhes bibliográficos
Autor(a) principal: Grigoletto, Eliana Contharteze [UNESP]
Data de Publicação: 2018
Outros Autores: de Oliveira, Edmundo Capelas, de Figueiredo Camargo, Rubens [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s40314-016-0381-1
http://hdl.handle.net/11449/171031
Resumo: Eigenfunctions associated with Riemann–Liouville and Caputo fractional differential operators are obtained by imposing a restriction on the fractional derivative parameter. Those eigenfunctions can be used to express the analytical solution of some linear sequential fractional differential equations. As a first application, we discuss analytical solutions for the so-called fractional Helmholtz equation with one variable, obtained from the standard equation in one dimension by replacing the integer order derivative by the Riemann–Liouville fractional derivative. A second application consists of an initial value problem for a fractional wave equation in two dimensions in which the integer order partial derivative with respect to the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler functions are important in the theory of fractional calculus because they emerge as solutions of fractional differential equations. Starting with the solution of a specific fractional differential equation in terms of these functions, we find a way to express the exponential function in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is that it is true for any value of the parameter n appearing in the definition of the functions, i.e., we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler functions.
id UNSP_accec319a8a173e92ea44b013afbe44e
oai_identifier_str oai:repositorio.unesp.br:11449/171031
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Linear fractional differential equations and eigenfunctions of fractional differential operatorsCaputo derivativesLinear fractional differential equationsMittag-Leffler functionsRiemann–Liouville derivativesEigenfunctions associated with Riemann–Liouville and Caputo fractional differential operators are obtained by imposing a restriction on the fractional derivative parameter. Those eigenfunctions can be used to express the analytical solution of some linear sequential fractional differential equations. As a first application, we discuss analytical solutions for the so-called fractional Helmholtz equation with one variable, obtained from the standard equation in one dimension by replacing the integer order derivative by the Riemann–Liouville fractional derivative. A second application consists of an initial value problem for a fractional wave equation in two dimensions in which the integer order partial derivative with respect to the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler functions are important in the theory of fractional calculus because they emerge as solutions of fractional differential equations. Starting with the solution of a specific fractional differential equation in terms of these functions, we find a way to express the exponential function in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is that it is true for any value of the parameter n appearing in the definition of the functions, i.e., we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler functions.Departamento de Bioprocessos e Biotecnologia FCA-UNESP, Rua José Barbosa de Barros 1780Departamento de Matemática Aplicada IMECC-UNICAMPDepartamento de Matemática Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 Bairro: Vargem LimpaDepartamento de Bioprocessos e Biotecnologia FCA-UNESP, Rua José Barbosa de Barros 1780Departamento de Matemática Faculdade de Ciências UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01 Bairro: Vargem LimpaUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Grigoletto, Eliana Contharteze [UNESP]de Oliveira, Edmundo Capelasde Figueiredo Camargo, Rubens [UNESP]2018-12-11T16:53:26Z2018-12-11T16:53:26Z2018-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1012-1026application/pdfhttp://dx.doi.org/10.1007/s40314-016-0381-1Computational and Applied Mathematics, v. 37, n. 2, p. 1012-1026, 2018.1807-03020101-8205http://hdl.handle.net/11449/17103110.1007/s40314-016-0381-12-s2.0-850474405082-s2.0-85047440508.pdf69094472123494060000-0003-4336-5387Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengComputational and Applied Mathematics0,272info:eu-repo/semantics/openAccess2023-10-24T06:09:45Zoai:repositorio.unesp.br:11449/171031Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:49:50.427276Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Linear fractional differential equations and eigenfunctions of fractional differential operators
title Linear fractional differential equations and eigenfunctions of fractional differential operators
spellingShingle Linear fractional differential equations and eigenfunctions of fractional differential operators
Grigoletto, Eliana Contharteze [UNESP]
Caputo derivatives
Linear fractional differential equations
Mittag-Leffler functions
Riemann–Liouville derivatives
title_short Linear fractional differential equations and eigenfunctions of fractional differential operators
title_full Linear fractional differential equations and eigenfunctions of fractional differential operators
title_fullStr Linear fractional differential equations and eigenfunctions of fractional differential operators
title_full_unstemmed Linear fractional differential equations and eigenfunctions of fractional differential operators
title_sort Linear fractional differential equations and eigenfunctions of fractional differential operators
author Grigoletto, Eliana Contharteze [UNESP]
author_facet Grigoletto, Eliana Contharteze [UNESP]
de Oliveira, Edmundo Capelas
de Figueiredo Camargo, Rubens [UNESP]
author_role author
author2 de Oliveira, Edmundo Capelas
de Figueiredo Camargo, Rubens [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Grigoletto, Eliana Contharteze [UNESP]
de Oliveira, Edmundo Capelas
de Figueiredo Camargo, Rubens [UNESP]
dc.subject.por.fl_str_mv Caputo derivatives
Linear fractional differential equations
Mittag-Leffler functions
Riemann–Liouville derivatives
topic Caputo derivatives
Linear fractional differential equations
Mittag-Leffler functions
Riemann–Liouville derivatives
description Eigenfunctions associated with Riemann–Liouville and Caputo fractional differential operators are obtained by imposing a restriction on the fractional derivative parameter. Those eigenfunctions can be used to express the analytical solution of some linear sequential fractional differential equations. As a first application, we discuss analytical solutions for the so-called fractional Helmholtz equation with one variable, obtained from the standard equation in one dimension by replacing the integer order derivative by the Riemann–Liouville fractional derivative. A second application consists of an initial value problem for a fractional wave equation in two dimensions in which the integer order partial derivative with respect to the time variable is replaced by the Caputo fractional derivative. The classical Mittag-Leffler functions are important in the theory of fractional calculus because they emerge as solutions of fractional differential equations. Starting with the solution of a specific fractional differential equation in terms of these functions, we find a way to express the exponential function in terms of classical Mittag-Leffler functions. A remarkable characteristic of this relation is that it is true for any value of the parameter n appearing in the definition of the functions, i.e., we have an infinite family of different expressions for ex in terms of classical Mittag-Leffler functions.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-11T16:53:26Z
2018-12-11T16:53:26Z
2018-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s40314-016-0381-1
Computational and Applied Mathematics, v. 37, n. 2, p. 1012-1026, 2018.
1807-0302
0101-8205
http://hdl.handle.net/11449/171031
10.1007/s40314-016-0381-1
2-s2.0-85047440508
2-s2.0-85047440508.pdf
6909447212349406
0000-0003-4336-5387
url http://dx.doi.org/10.1007/s40314-016-0381-1
http://hdl.handle.net/11449/171031
identifier_str_mv Computational and Applied Mathematics, v. 37, n. 2, p. 1012-1026, 2018.
1807-0302
0101-8205
10.1007/s40314-016-0381-1
2-s2.0-85047440508
2-s2.0-85047440508.pdf
6909447212349406
0000-0003-4336-5387
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Computational and Applied Mathematics
0,272
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1012-1026
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128570521812992