Using protein nanocages for biochemical and biotechnological applications

Detalhes bibliográficos
Autor(a) principal: Carvalho, Ana de Jesus Silva
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10362/130337
Resumo: Nanocage proteins exhibit a near spherical structure and are able to incorporate active enzymes and/or harmful intermediates or products in their hollow cage, apart from the rest of the cell. In this thesis, Dps from Marinobacter hydrocarbonoclasticus (a 12-mer protein) was encapsulated inside EncA from Myxococcus xanthus (composed of 180 subunits), creating a cage-in-a-cage system (EncA:DpsT). To accomplish that, a tag required for the encapsulation was inserted at the C-terminal of Dps (DpsT) leading to the incorporation of ~ 8 DpsT molecules inside each encapsulin shell. Biochemical and spectroscopic techniques confirmed the overall native structure of the proteins expressed in Escherichia coli, exhibiting small differences while comparing to the individual native forms. During this work, Dps WT, DpsT, EncA and EncA:DpsT proteins were evaluated based on their thermostability, proteolytic resistance and DNA binding ability. Although the positive character of the tag inserted in Dps decreased the thermostability of the mini-ferritin compared to its native form, the DNA binding affinity increased 500 times. EncA and EncA:DpsT complex were also capable of binding supercoiled plasmid DNA. Moreover, the encapsulin shell provided a physical shield for the cargo DpsT, as demonstrated by proteolysis assays with Proteinase K. The uptake of iron by these proteins was also evaluated, using H2O2 as oxidant agent to estimate their maximum iron loading capacity. While Dps WT and DpsT showed to have the same iron capacity (~ 1,000 iron atoms), EncA:DpsT complex revealed twice the amount of iron incorporated by the encapsulin nanocage alone (12,000 vs 6,000 iron atoms). Additionally, to study the oxidation and mineralization kinetics, assays with O2 as oxidant were performed and copper was used as a putative catalyst in the ferroxidation process. The overall kinetic profile of the EncA:DpsT complex was similar to the EncA and DpsT ones. The presence of copper increased the kinetic rate for all proteins. Nevertheless, the encapsulation reduced the catalytic activity of DpsT when copper was used. Although both empty and cargo loaded EncA reduced the total amount of iron successfully incorporated when copper was present, the encapsulation of DpsT improved the uptake of a larger amount of iron by the EncA:DpsT system, compared to EncA alone. The present work reports, for the first time, the production of a cage-in-a-cage system by engineering a Dps protein. Thus, the work developed in this thesis provides insight into the cooperation between these two proteins, while opening new applications for the encapsulin systems.
id RCAP_21563aaed814345c43962ffbf3478e95
oai_identifier_str oai:run.unl.pt:10362/130337
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Using protein nanocages for biochemical and biotechnological applicationsDps proteinsEncapsulinsProtein encapsulationIron ferroxidation and mineralizationCopper as a catalystDNA binding and protectionDomínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e TecnologiasNanocage proteins exhibit a near spherical structure and are able to incorporate active enzymes and/or harmful intermediates or products in their hollow cage, apart from the rest of the cell. In this thesis, Dps from Marinobacter hydrocarbonoclasticus (a 12-mer protein) was encapsulated inside EncA from Myxococcus xanthus (composed of 180 subunits), creating a cage-in-a-cage system (EncA:DpsT). To accomplish that, a tag required for the encapsulation was inserted at the C-terminal of Dps (DpsT) leading to the incorporation of ~ 8 DpsT molecules inside each encapsulin shell. Biochemical and spectroscopic techniques confirmed the overall native structure of the proteins expressed in Escherichia coli, exhibiting small differences while comparing to the individual native forms. During this work, Dps WT, DpsT, EncA and EncA:DpsT proteins were evaluated based on their thermostability, proteolytic resistance and DNA binding ability. Although the positive character of the tag inserted in Dps decreased the thermostability of the mini-ferritin compared to its native form, the DNA binding affinity increased 500 times. EncA and EncA:DpsT complex were also capable of binding supercoiled plasmid DNA. Moreover, the encapsulin shell provided a physical shield for the cargo DpsT, as demonstrated by proteolysis assays with Proteinase K. The uptake of iron by these proteins was also evaluated, using H2O2 as oxidant agent to estimate their maximum iron loading capacity. While Dps WT and DpsT showed to have the same iron capacity (~ 1,000 iron atoms), EncA:DpsT complex revealed twice the amount of iron incorporated by the encapsulin nanocage alone (12,000 vs 6,000 iron atoms). Additionally, to study the oxidation and mineralization kinetics, assays with O2 as oxidant were performed and copper was used as a putative catalyst in the ferroxidation process. The overall kinetic profile of the EncA:DpsT complex was similar to the EncA and DpsT ones. The presence of copper increased the kinetic rate for all proteins. Nevertheless, the encapsulation reduced the catalytic activity of DpsT when copper was used. Although both empty and cargo loaded EncA reduced the total amount of iron successfully incorporated when copper was present, the encapsulation of DpsT improved the uptake of a larger amount of iron by the EncA:DpsT system, compared to EncA alone. The present work reports, for the first time, the production of a cage-in-a-cage system by engineering a Dps protein. Thus, the work developed in this thesis provides insight into the cooperation between these two proteins, while opening new applications for the encapsulin systems.As nanogaiolas proteicas apresentam uma estrutura quase esférica e são capazes de incorporar enzimas ativas e/ou intermediários ou produtos tóxicos na sua gaiola oca, à parte do resto da célula. Nesta tese, a Dps de Marinobacter hydrocarbonoclasticus (proteína 12-mer) foi encapsulada no interior da EncA de Myxococcus xanthus (composta por 180 subunidades), criando um sistema gaiola-dentro-de-gaiola (EncA:DpsT). Para atingir este objetivo, uma sequência sinal necessária para o encapsulamento foi inserida no C-terminal da Dps (DpsT) levando à incorporação de ~ 8 moléculas de DpsT dentro de cada encapsulina. Técnicas bioquímicas e espectroscópicas confirmaram a estrutura global nativa das proteínas expressas em Escherichia coli, exibindo pequenas diferenças quando comparadas com as suas formas nativas individuais. Durante este trabalho, as proteínas Dps WT, DpsT, EncA e EncA:DpsT foram avaliadas com base na sua termoestabilidade, resistência proteolítica e capacidade de ligação ao ADN. Embora o carácter positivo da sequência sinal inserida na Dps tenha diminuído a termoestabilidade da mini-ferritina em comparação com a sua forma nativa, a afinidade de ligação ao ADN aumentou 500 vezes. A EncA e o complexo EncA:DpsT mostraram também ser capazes de ligar ADN plasmídeo superenrolado. Além disso, o invólucro da encapsulina forneceu um escudo físico para a proteína DpsT encapsulada, como demonstrado pelos ensaios de proteólise com Proteinase K. A capacidade destas proteínas para incorporação ferro foi também avaliada, utilizando H2O2 como agente oxidante, de modo a estimar a sua capacidade máxima de armazenamento de ferro. Enquanto a Dps WT e a DpsT incorporaram a mesma capacidade de ferro (~ 1.000 átomos de ferro), o complexo EncA:DpsT revelou ser capaz de incorporar o dobro da quantidade de ferro relativamente à EncA sozinha (12.000 vs 6.000 átomos de ferro). Além disso, para estudar a cinética de oxidação e mineralização do ferro, foram realizados ensaios com O2 como oxidante e o cobre foi utilizado como catalisador putativo no processo de ferroxidação. O perfil cinético do complexo EncA:DpsT foi semelhante ao da EncA e da DpsT. No entanto, o encapsulamento reduziu a atividade catalítica da DpsT, na presença de cobre. Embora tanto a EncA vazia como a complexada tenham reduzido a quantidade total de ferro incorporado com sucesso na presença de cobre, o encapsulamento da DpsT resultou na incorporação de uma maior quantidade de ferro pelo sistema, em comparação com a EncA vazia. O presente trabalho relata, pela primeira vez, a produção de um sistema de gaiola-dentro-de-gaiola através de engenharia genética da proteína Dps. Assim, o trabalho desenvolvido nesta tese fornece uma visão da cooperação entre estas duas proteínas abrindo, ao mesmo tempo, novas aplicações para os sistemas de encapsulinas.Tavares, PedroRUNCarvalho, Ana de Jesus Silva2023-12-01T01:30:24Z2021-12-212021-12-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/130337enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:09:01Zoai:run.unl.pt:10362/130337Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:46:45.067508Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Using protein nanocages for biochemical and biotechnological applications
title Using protein nanocages for biochemical and biotechnological applications
spellingShingle Using protein nanocages for biochemical and biotechnological applications
Carvalho, Ana de Jesus Silva
Dps proteins
Encapsulins
Protein encapsulation
Iron ferroxidation and mineralization
Copper as a catalyst
DNA binding and protection
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
title_short Using protein nanocages for biochemical and biotechnological applications
title_full Using protein nanocages for biochemical and biotechnological applications
title_fullStr Using protein nanocages for biochemical and biotechnological applications
title_full_unstemmed Using protein nanocages for biochemical and biotechnological applications
title_sort Using protein nanocages for biochemical and biotechnological applications
author Carvalho, Ana de Jesus Silva
author_facet Carvalho, Ana de Jesus Silva
author_role author
dc.contributor.none.fl_str_mv Tavares, Pedro
RUN
dc.contributor.author.fl_str_mv Carvalho, Ana de Jesus Silva
dc.subject.por.fl_str_mv Dps proteins
Encapsulins
Protein encapsulation
Iron ferroxidation and mineralization
Copper as a catalyst
DNA binding and protection
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
topic Dps proteins
Encapsulins
Protein encapsulation
Iron ferroxidation and mineralization
Copper as a catalyst
DNA binding and protection
Domínio/Área Científica::Engenharia e Tecnologia::Outras Engenharias e Tecnologias
description Nanocage proteins exhibit a near spherical structure and are able to incorporate active enzymes and/or harmful intermediates or products in their hollow cage, apart from the rest of the cell. In this thesis, Dps from Marinobacter hydrocarbonoclasticus (a 12-mer protein) was encapsulated inside EncA from Myxococcus xanthus (composed of 180 subunits), creating a cage-in-a-cage system (EncA:DpsT). To accomplish that, a tag required for the encapsulation was inserted at the C-terminal of Dps (DpsT) leading to the incorporation of ~ 8 DpsT molecules inside each encapsulin shell. Biochemical and spectroscopic techniques confirmed the overall native structure of the proteins expressed in Escherichia coli, exhibiting small differences while comparing to the individual native forms. During this work, Dps WT, DpsT, EncA and EncA:DpsT proteins were evaluated based on their thermostability, proteolytic resistance and DNA binding ability. Although the positive character of the tag inserted in Dps decreased the thermostability of the mini-ferritin compared to its native form, the DNA binding affinity increased 500 times. EncA and EncA:DpsT complex were also capable of binding supercoiled plasmid DNA. Moreover, the encapsulin shell provided a physical shield for the cargo DpsT, as demonstrated by proteolysis assays with Proteinase K. The uptake of iron by these proteins was also evaluated, using H2O2 as oxidant agent to estimate their maximum iron loading capacity. While Dps WT and DpsT showed to have the same iron capacity (~ 1,000 iron atoms), EncA:DpsT complex revealed twice the amount of iron incorporated by the encapsulin nanocage alone (12,000 vs 6,000 iron atoms). Additionally, to study the oxidation and mineralization kinetics, assays with O2 as oxidant were performed and copper was used as a putative catalyst in the ferroxidation process. The overall kinetic profile of the EncA:DpsT complex was similar to the EncA and DpsT ones. The presence of copper increased the kinetic rate for all proteins. Nevertheless, the encapsulation reduced the catalytic activity of DpsT when copper was used. Although both empty and cargo loaded EncA reduced the total amount of iron successfully incorporated when copper was present, the encapsulation of DpsT improved the uptake of a larger amount of iron by the EncA:DpsT system, compared to EncA alone. The present work reports, for the first time, the production of a cage-in-a-cage system by engineering a Dps protein. Thus, the work developed in this thesis provides insight into the cooperation between these two proteins, while opening new applications for the encapsulin systems.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-21
2021-12-21T00:00:00Z
2023-12-01T01:30:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10362/130337
url http://hdl.handle.net/10362/130337
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799138070856990720