Further generalization of symmetric multiplicity theory to the geometric case over a field
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/125419 |
Resumo: | 0751964 |
id |
RCAP_2252c38b39d4977d1251b52186c2197d |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/125419 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Further generalization of symmetric multiplicity theory to the geometric case over a fieldCombinatorially symmetric matrixEigenvalueGeneralized starGeometric multiplicityGraph of a matrixPathAlgebra and Number TheoryGeometry and Topology0751964Using the recent geometric Parter-Wiener, etc. theorem and related results, it is shown that much of the multiplicity theory developed for real symmetric matrices associated with paths and generalized stars remains valid for combinatorially symmetric matrices over a field. A characterization of generalized stars in the case of combinatorially symmetric matrices is given.CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNCinzori, IsaacJohnson, Charles R.Lang, HannahSaiago, Carlos M.2021-10-01T02:14:50Z2021-01-012021-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article5application/pdfhttp://hdl.handle.net/10362/125419eng2300-7451PURE: 28200305https://doi.org/10.1515/spma-2020-0119info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:06:24Zoai:run.unl.pt:10362/125419Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:45:42.256635Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
title |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
spellingShingle |
Further generalization of symmetric multiplicity theory to the geometric case over a field Cinzori, Isaac Combinatorially symmetric matrix Eigenvalue Generalized star Geometric multiplicity Graph of a matrix Path Algebra and Number Theory Geometry and Topology |
title_short |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
title_full |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
title_fullStr |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
title_full_unstemmed |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
title_sort |
Further generalization of symmetric multiplicity theory to the geometric case over a field |
author |
Cinzori, Isaac |
author_facet |
Cinzori, Isaac Johnson, Charles R. Lang, Hannah Saiago, Carlos M. |
author_role |
author |
author2 |
Johnson, Charles R. Lang, Hannah Saiago, Carlos M. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Cinzori, Isaac Johnson, Charles R. Lang, Hannah Saiago, Carlos M. |
dc.subject.por.fl_str_mv |
Combinatorially symmetric matrix Eigenvalue Generalized star Geometric multiplicity Graph of a matrix Path Algebra and Number Theory Geometry and Topology |
topic |
Combinatorially symmetric matrix Eigenvalue Generalized star Geometric multiplicity Graph of a matrix Path Algebra and Number Theory Geometry and Topology |
description |
0751964 |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-01T02:14:50Z 2021-01-01 2021-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/125419 |
url |
http://hdl.handle.net/10362/125419 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2300-7451 PURE: 28200305 https://doi.org/10.1515/spma-2020-0119 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138061296074752 |