Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/100879 |
Resumo: | UID/MAT/00297/2019 |
id |
RCAP_60211aed06562b9e3ed5020534b9a7e4 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/100879 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignmentsAssignmentsBranch duplicationCombinatorially symmetricDiagonalizable matrixDiameterEigenvalueGeometric multiplicityGraph of a matrixTreeAlgebra and Number TheoryGeometry and TopologyUID/MAT/00297/2019Considered are combinatorially symmetric matrices, whose graph is a given tree, in view of the fact recent analysis shows that the geometric multiplicity theory for the eigenvalues of such matrices closely parallels that for real symmetric (and complex Hermitian) matrices. In contrast to the real symmetric case, it is shown that (a) the smallest example (13 vertices) of a tree and multiplicity list (3, 3, 3, 1, 1, 1, 1) meeting standard necessary conditions that has no real symmetric realizations does have a diagonalizable realization and for arbitrary prescribed (real and multiple) eigenvalues, and (b) that all trees with diameter < 8 are geometrically di-minimal (i.e., have diagonalizable realizations with as few of distinct eigenvalues as the diameter). This re-raises natural questions about multiplicity lists that proved subtly false in the real symmetric case. What is their status in the geometric multiplicity list case?CMA - Centro de Matemática e AplicaçõesDM - Departamento de MatemáticaRUNSaiago, Carlos M.2020-07-14T22:19:27Z2019-01-012019-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article11application/pdfhttp://hdl.handle.net/10362/100879eng2300-7451PURE: 17193935https://doi.org/10.1515/spma-2019-0025info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T04:47:13Zoai:run.unl.pt:10362/100879Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:39:26.799621Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
title |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
spellingShingle |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments Saiago, Carlos M. Assignments Branch duplication Combinatorially symmetric Diagonalizable matrix Diameter Eigenvalue Geometric multiplicity Graph of a matrix Tree Algebra and Number Theory Geometry and Topology |
title_short |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
title_full |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
title_fullStr |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
title_full_unstemmed |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
title_sort |
Diagonalizable matrices whose graph is a tree: The minimum number of distinct eigenvalues and the feasibility of eigenvalue assignments |
author |
Saiago, Carlos M. |
author_facet |
Saiago, Carlos M. |
author_role |
author |
dc.contributor.none.fl_str_mv |
CMA - Centro de Matemática e Aplicações DM - Departamento de Matemática RUN |
dc.contributor.author.fl_str_mv |
Saiago, Carlos M. |
dc.subject.por.fl_str_mv |
Assignments Branch duplication Combinatorially symmetric Diagonalizable matrix Diameter Eigenvalue Geometric multiplicity Graph of a matrix Tree Algebra and Number Theory Geometry and Topology |
topic |
Assignments Branch duplication Combinatorially symmetric Diagonalizable matrix Diameter Eigenvalue Geometric multiplicity Graph of a matrix Tree Algebra and Number Theory Geometry and Topology |
description |
UID/MAT/00297/2019 |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-01-01 2019-01-01T00:00:00Z 2020-07-14T22:19:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/100879 |
url |
http://hdl.handle.net/10362/100879 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2300-7451 PURE: 17193935 https://doi.org/10.1515/spma-2019-0025 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
11 application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138010537656320 |