Quantifying road traffic emissions embedded in a multi-objective traffic assignment model

Detalhes bibliográficos
Autor(a) principal: Macedo, Eloísa
Data de Publicação: 2019
Outros Autores: Tomás, Ricardo, Fernandes, Paulo, Coelho, Margarida C., Bandeira, Jorge M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/27153
Resumo: In a road network, drivers typically seek to minimize their own travel time, often affecting system-wide performance. With the increasing environmental awareness, for an efficient traffic assignment (TA), besides concerns with travel times, traffic managers should not neglect the system-wide level of both global and local pollutant emissions. Measuring road traffic emissions can be costly and different models based on vehicle-specific parameters with many input variables have been suggested in the literature. This paper proposes a simple way to quantifying carbon dioxide (CO2) and nitrogen oxides (NOX) emissions with only average speed as input variable and presents a multi-objective TA approach that seeks to minimize system-wide travel time, distance travelled (associated with fuel consumption) and global and local pollutant emissions. A real-world case study on an intercity corridor with many alternative routes between two zones is presented. Experiments considering TA based on travel time, and on time, distance travelled, and pollutant emissions are reported. Results highlight that system optimal distribution based on the suggested multi-objective TA based on three components yields savings in terms of distance travelled (2.6%) and emissions (1.3% for CO2 and 1.1% for NOX), but penalizes travel time 3%, which is translated in an increase of 20sec per vehicle, when compared to the solution only focused on minimizing travel time. The developed methodology is a suitable tool for traffic analysts to predict vehicle system-wide travel time, distance travelled and pollutant emissions with few vehicle information but with a reasonable detail for a specific traffic flow on a given road network, to support analyses for sustainable transport policies and may be used, for instance, as an environmental impact component of a pricing scheme, traffic signal control strategies based on emissions reduction, or to minimize congestion by giving prior information to drivers on the specific routes to be chosen.
id RCAP_2272f6d1b48425d5c7996211a4c4a687
oai_identifier_str oai:ria.ua.pt:10773/27153
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Quantifying road traffic emissions embedded in a multi-objective traffic assignment modelMulti-objective dynamic traffic assignmentEmissionsCOPERTIn a road network, drivers typically seek to minimize their own travel time, often affecting system-wide performance. With the increasing environmental awareness, for an efficient traffic assignment (TA), besides concerns with travel times, traffic managers should not neglect the system-wide level of both global and local pollutant emissions. Measuring road traffic emissions can be costly and different models based on vehicle-specific parameters with many input variables have been suggested in the literature. This paper proposes a simple way to quantifying carbon dioxide (CO2) and nitrogen oxides (NOX) emissions with only average speed as input variable and presents a multi-objective TA approach that seeks to minimize system-wide travel time, distance travelled (associated with fuel consumption) and global and local pollutant emissions. A real-world case study on an intercity corridor with many alternative routes between two zones is presented. Experiments considering TA based on travel time, and on time, distance travelled, and pollutant emissions are reported. Results highlight that system optimal distribution based on the suggested multi-objective TA based on three components yields savings in terms of distance travelled (2.6%) and emissions (1.3% for CO2 and 1.1% for NOX), but penalizes travel time 3%, which is translated in an increase of 20sec per vehicle, when compared to the solution only focused on minimizing travel time. The developed methodology is a suitable tool for traffic analysts to predict vehicle system-wide travel time, distance travelled and pollutant emissions with few vehicle information but with a reasonable detail for a specific traffic flow on a given road network, to support analyses for sustainable transport policies and may be used, for instance, as an environmental impact component of a pricing scheme, traffic signal control strategies based on emissions reduction, or to minimize congestion by giving prior information to drivers on the specific routes to be chosen.Elsevier2019-12-11T16:44:09Z2020-01-01T00:00:00Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/27153eng2352-146510.1016/j.trpro.2020.03.143Macedo, EloísaTomás, RicardoFernandes, PauloCoelho, Margarida C.Bandeira, Jorge M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:52:33Zoai:ria.ua.pt:10773/27153Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:59:58.953356Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
title Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
spellingShingle Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
Macedo, Eloísa
Multi-objective dynamic traffic assignment
Emissions
COPERT
title_short Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
title_full Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
title_fullStr Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
title_full_unstemmed Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
title_sort Quantifying road traffic emissions embedded in a multi-objective traffic assignment model
author Macedo, Eloísa
author_facet Macedo, Eloísa
Tomás, Ricardo
Fernandes, Paulo
Coelho, Margarida C.
Bandeira, Jorge M.
author_role author
author2 Tomás, Ricardo
Fernandes, Paulo
Coelho, Margarida C.
Bandeira, Jorge M.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Macedo, Eloísa
Tomás, Ricardo
Fernandes, Paulo
Coelho, Margarida C.
Bandeira, Jorge M.
dc.subject.por.fl_str_mv Multi-objective dynamic traffic assignment
Emissions
COPERT
topic Multi-objective dynamic traffic assignment
Emissions
COPERT
description In a road network, drivers typically seek to minimize their own travel time, often affecting system-wide performance. With the increasing environmental awareness, for an efficient traffic assignment (TA), besides concerns with travel times, traffic managers should not neglect the system-wide level of both global and local pollutant emissions. Measuring road traffic emissions can be costly and different models based on vehicle-specific parameters with many input variables have been suggested in the literature. This paper proposes a simple way to quantifying carbon dioxide (CO2) and nitrogen oxides (NOX) emissions with only average speed as input variable and presents a multi-objective TA approach that seeks to minimize system-wide travel time, distance travelled (associated with fuel consumption) and global and local pollutant emissions. A real-world case study on an intercity corridor with many alternative routes between two zones is presented. Experiments considering TA based on travel time, and on time, distance travelled, and pollutant emissions are reported. Results highlight that system optimal distribution based on the suggested multi-objective TA based on three components yields savings in terms of distance travelled (2.6%) and emissions (1.3% for CO2 and 1.1% for NOX), but penalizes travel time 3%, which is translated in an increase of 20sec per vehicle, when compared to the solution only focused on minimizing travel time. The developed methodology is a suitable tool for traffic analysts to predict vehicle system-wide travel time, distance travelled and pollutant emissions with few vehicle information but with a reasonable detail for a specific traffic flow on a given road network, to support analyses for sustainable transport policies and may be used, for instance, as an environmental impact component of a pricing scheme, traffic signal control strategies based on emissions reduction, or to minimize congestion by giving prior information to drivers on the specific routes to be chosen.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-11T16:44:09Z
2020-01-01T00:00:00Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/27153
url http://hdl.handle.net/10773/27153
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2352-1465
10.1016/j.trpro.2020.03.143
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137654303883264