Complex Lagrangians in a hyperKaehler manifold and the relative Albanese

Detalhes bibliográficos
Autor(a) principal: Biswas, Indranil
Data de Publicação: 2020
Outros Autores: Gómez, Tomas, Oliveira, Andre Gama
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10348/10215
Resumo: Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M.
id RCAP_22be24202b90e1ac171b0e995bfafa97
oai_identifier_str oai:repositorio.utad.pt:10348/10215
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Complex Lagrangians in a hyperKaehler manifold and the relative Albaneseresearch subject categoriesmathematicsalgebrageometry and mathematical analysisLet M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M.2020-10-28T14:41:48Z2020-01-01T00:00:00Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10348/10215engBiswas, IndranilGómez, TomasOliveira, Andre Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:52:40Zoai:repositorio.utad.pt:10348/10215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:05:29.018002Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
title Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
spellingShingle Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
Biswas, Indranil
research subject categories
mathematics
algebra
geometry and mathematical analysis
title_short Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
title_full Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
title_fullStr Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
title_full_unstemmed Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
title_sort Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
author Biswas, Indranil
author_facet Biswas, Indranil
Gómez, Tomas
Oliveira, Andre Gama
author_role author
author2 Gómez, Tomas
Oliveira, Andre Gama
author2_role author
author
dc.contributor.author.fl_str_mv Biswas, Indranil
Gómez, Tomas
Oliveira, Andre Gama
dc.subject.por.fl_str_mv research subject categories
mathematics
algebra
geometry and mathematical analysis
topic research subject categories
mathematics
algebra
geometry and mathematical analysis
description Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-28T14:41:48Z
2020-01-01T00:00:00Z
2020
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10348/10215
url http://hdl.handle.net/10348/10215
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137141787197440