Complex Lagrangians in a hyperKaehler manifold and the relative Albanese
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10348/10215 |
Resumo: | Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M. |
id |
RCAP_22be24202b90e1ac171b0e995bfafa97 |
---|---|
oai_identifier_str |
oai:repositorio.utad.pt:10348/10215 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Complex Lagrangians in a hyperKaehler manifold and the relative Albaneseresearch subject categoriesmathematicsalgebrageometry and mathematical analysisLet M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M.2020-10-28T14:41:48Z2020-01-01T00:00:00Z2020info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10348/10215engBiswas, IndranilGómez, TomasOliveira, Andre Gamainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-02T12:52:40Zoai:repositorio.utad.pt:10348/10215Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:05:29.018002Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
title |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
spellingShingle |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese Biswas, Indranil research subject categories mathematics algebra geometry and mathematical analysis |
title_short |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
title_full |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
title_fullStr |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
title_full_unstemmed |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
title_sort |
Complex Lagrangians in a hyperKaehler manifold and the relative Albanese |
author |
Biswas, Indranil |
author_facet |
Biswas, Indranil Gómez, Tomas Oliveira, Andre Gama |
author_role |
author |
author2 |
Gómez, Tomas Oliveira, Andre Gama |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Biswas, Indranil Gómez, Tomas Oliveira, Andre Gama |
dc.subject.por.fl_str_mv |
research subject categories mathematics algebra geometry and mathematical analysis |
topic |
research subject categories mathematics algebra geometry and mathematical analysis |
description |
Let M be the moduli space of complex Lagrangian submanifolds of a hyperKähler manifold X, and let A→ M be the relative Albanese over M. We prove that A has a natural holomorphic symplectic structure. The projection onto M defines a completely integrable structure on the symplectic manifold A. In particular, the fibers are complex Lagrangians with respect to the symplectic form on A. We also prove analogous results for the relative Picard over M. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-10-28T14:41:48Z 2020-01-01T00:00:00Z 2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10348/10215 |
url |
http://hdl.handle.net/10348/10215 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137141787197440 |