Riemann-Hilbert problems for poly-Hardy space on the unit ball

Detalhes bibliográficos
Autor(a) principal: He, Fuli
Data de Publicação: 2016
Outros Autores: Ku, Min, Dang, Pei, Kähler, Uwe
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/15736
Resumo: In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.
id RCAP_22cdd60bc9005b8af03fa054af1f65a3
oai_identifier_str oai:ria.ua.pt:10773/15736
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Riemann-Hilbert problems for poly-Hardy space on the unit ballHardy spaceRiemann-Hilbert problemsMonogenic signalsSchwarz kernelIn this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.Taylor and Francis2016-06-15T16:21:38Z2016-01-04T00:00:00Z2016-01-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15736eng1747-693310.1080/17476933.2015.1123698He, FuliKu, MinDang, PeiKähler, Uweinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:29:11Zoai:ria.ua.pt:10773/15736Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:02.561588Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Riemann-Hilbert problems for poly-Hardy space on the unit ball
title Riemann-Hilbert problems for poly-Hardy space on the unit ball
spellingShingle Riemann-Hilbert problems for poly-Hardy space on the unit ball
He, Fuli
Hardy space
Riemann-Hilbert problems
Monogenic signals
Schwarz kernel
title_short Riemann-Hilbert problems for poly-Hardy space on the unit ball
title_full Riemann-Hilbert problems for poly-Hardy space on the unit ball
title_fullStr Riemann-Hilbert problems for poly-Hardy space on the unit ball
title_full_unstemmed Riemann-Hilbert problems for poly-Hardy space on the unit ball
title_sort Riemann-Hilbert problems for poly-Hardy space on the unit ball
author He, Fuli
author_facet He, Fuli
Ku, Min
Dang, Pei
Kähler, Uwe
author_role author
author2 Ku, Min
Dang, Pei
Kähler, Uwe
author2_role author
author
author
dc.contributor.author.fl_str_mv He, Fuli
Ku, Min
Dang, Pei
Kähler, Uwe
dc.subject.por.fl_str_mv Hardy space
Riemann-Hilbert problems
Monogenic signals
Schwarz kernel
topic Hardy space
Riemann-Hilbert problems
Monogenic signals
Schwarz kernel
description In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.
publishDate 2016
dc.date.none.fl_str_mv 2016-06-15T16:21:38Z
2016-01-04T00:00:00Z
2016-01-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/15736
url http://hdl.handle.net/10773/15736
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1747-6933
10.1080/17476933.2015.1123698
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Taylor and Francis
publisher.none.fl_str_mv Taylor and Francis
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137560115544064