Riemann-Hilbert problems for poly-Hardy space on the unit ball
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/15736 |
Resumo: | In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane. |
id |
RCAP_22cdd60bc9005b8af03fa054af1f65a3 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/15736 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Riemann-Hilbert problems for poly-Hardy space on the unit ballHardy spaceRiemann-Hilbert problemsMonogenic signalsSchwarz kernelIn this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane.Taylor and Francis2016-06-15T16:21:38Z2016-01-04T00:00:00Z2016-01-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/15736eng1747-693310.1080/17476933.2015.1123698He, FuliKu, MinDang, PeiKähler, Uweinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:29:11Zoai:ria.ua.pt:10773/15736Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:02.561588Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
title |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
spellingShingle |
Riemann-Hilbert problems for poly-Hardy space on the unit ball He, Fuli Hardy space Riemann-Hilbert problems Monogenic signals Schwarz kernel |
title_short |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
title_full |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
title_fullStr |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
title_full_unstemmed |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
title_sort |
Riemann-Hilbert problems for poly-Hardy space on the unit ball |
author |
He, Fuli |
author_facet |
He, Fuli Ku, Min Dang, Pei Kähler, Uwe |
author_role |
author |
author2 |
Ku, Min Dang, Pei Kähler, Uwe |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
He, Fuli Ku, Min Dang, Pei Kähler, Uwe |
dc.subject.por.fl_str_mv |
Hardy space Riemann-Hilbert problems Monogenic signals Schwarz kernel |
topic |
Hardy space Riemann-Hilbert problems Monogenic signals Schwarz kernel |
description |
In this paper, we focus on a Riemann–Hilbert boundary value problem (BVP) with a constant coefficients for the poly-Hardy space on the real unit ball in higher dimensions. We first discuss the boundary behaviour of functions in the poly-Hardy class. Then we construct the Schwarz kernel and the higher order Schwarz operator to study Riemann–Hilbert BVPs over the unit ball for the poly- Hardy class. Finally, we obtain explicit integral expressions for their solutions. As a special case, monogenic signals as elements in the Hardy space over the unit sphere will be reconstructed in the case of boundary data given in terms of functions having values in a Clifford subalgebra. Such monogenic signals represent the generalization of analytic signals as elements of the Hardy space over the unit circle of the complex plane. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-06-15T16:21:38Z 2016-01-04T00:00:00Z 2016-01-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/15736 |
url |
http://hdl.handle.net/10773/15736 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1747-6933 10.1080/17476933.2015.1123698 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Taylor and Francis |
publisher.none.fl_str_mv |
Taylor and Francis |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137560115544064 |