Topological Features of Lax Algebras
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/7752 https://doi.org/10.1023/A:1024274315778 |
Resumo: | Having as starting point Barr's description of topological spaces as lax algebras for the ultrafilter monad, in this paper we present further topological examples of lax algebras – such as quasi-metric spaces, approach spaces and quasi-uniform spaces – and show that, in a suitable setting, the categories of lax algebras have indeed a topological nature. Furthermore, we generalize to this setting known properties of special categories of lax algebras and, extending the construction of Manes, we describe the Cech–Stone compactification of lax algebras. |
id |
RCAP_237cce8ed450588007d95153a811eb82 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/7752 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Topological Features of Lax AlgebrasHaving as starting point Barr's description of topological spaces as lax algebras for the ultrafilter monad, in this paper we present further topological examples of lax algebras – such as quasi-metric spaces, approach spaces and quasi-uniform spaces – and show that, in a suitable setting, the categories of lax algebras have indeed a topological nature. Furthermore, we generalize to this setting known properties of special categories of lax algebras and, extending the construction of Manes, we describe the Cech–Stone compactification of lax algebras.2003info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/7752http://hdl.handle.net/10316/7752https://doi.org/10.1023/A:1024274315778engApplied Categorical Structures. 11:3 (2003) 267-286Clementino, Maria ManuelHofmann, Dirkinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2020-05-25T13:07:41Zoai:estudogeral.uc.pt:10316/7752Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:00:43.321846Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Topological Features of Lax Algebras |
title |
Topological Features of Lax Algebras |
spellingShingle |
Topological Features of Lax Algebras Clementino, Maria Manuel |
title_short |
Topological Features of Lax Algebras |
title_full |
Topological Features of Lax Algebras |
title_fullStr |
Topological Features of Lax Algebras |
title_full_unstemmed |
Topological Features of Lax Algebras |
title_sort |
Topological Features of Lax Algebras |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel Hofmann, Dirk |
author_role |
author |
author2 |
Hofmann, Dirk |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel Hofmann, Dirk |
description |
Having as starting point Barr's description of topological spaces as lax algebras for the ultrafilter monad, in this paper we present further topological examples of lax algebras – such as quasi-metric spaces, approach spaces and quasi-uniform spaces – and show that, in a suitable setting, the categories of lax algebras have indeed a topological nature. Furthermore, we generalize to this setting known properties of special categories of lax algebras and, extending the construction of Manes, we describe the Cech–Stone compactification of lax algebras. |
publishDate |
2003 |
dc.date.none.fl_str_mv |
2003 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/7752 http://hdl.handle.net/10316/7752 https://doi.org/10.1023/A:1024274315778 |
url |
http://hdl.handle.net/10316/7752 https://doi.org/10.1023/A:1024274315778 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Categorical Structures. 11:3 (2003) 267-286 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133897586376704 |