Lax orthogonal factorisation systems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/43633 https://doi.org/10.1016/j.aim.2016.07.028 |
Resumo: | This paper introduces lax orthogonal algebraic weak factorisation systems on 2-categories and describes a method of constructing them. This method rests in the notion of simple 2-monad, that is a generalisation of the simple reflections studied by Cassidy, Hébert and Kelly. Each simple 2-monad on a finitely complete 2-category gives rise to a lax orthogonal algebraic weak factorisation system, and an example of a simple 2-monad is given by completion under a class of colimits. The notions of KZ lifting operation, lax natural lifting operation and lax orthogonality between morphisms are studied. |
id |
RCAP_b0b36750a5a9f3f8f7bc8940c3be4b36 |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/43633 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Lax orthogonal factorisation systemsThis paper introduces lax orthogonal algebraic weak factorisation systems on 2-categories and describes a method of constructing them. This method rests in the notion of simple 2-monad, that is a generalisation of the simple reflections studied by Cassidy, Hébert and Kelly. Each simple 2-monad on a finitely complete 2-category gives rise to a lax orthogonal algebraic weak factorisation system, and an example of a simple 2-monad is given by completion under a class of colimits. The notions of KZ lifting operation, lax natural lifting operation and lax orthogonality between morphisms are studied.Elsevier2016-10-22info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/43633http://hdl.handle.net/10316/43633https://doi.org/10.1016/j.aim.2016.07.028https://doi.org/10.1016/j.aim.2016.07.028enghttp://www.sciencedirect.com/science/article/pii/S0001870816309604Clementino, Maria ManuelLopez Franco, Ignacioinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2021-06-29T10:02:56Zoai:estudogeral.uc.pt:10316/43633Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:53:26.081854Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Lax orthogonal factorisation systems |
title |
Lax orthogonal factorisation systems |
spellingShingle |
Lax orthogonal factorisation systems Clementino, Maria Manuel |
title_short |
Lax orthogonal factorisation systems |
title_full |
Lax orthogonal factorisation systems |
title_fullStr |
Lax orthogonal factorisation systems |
title_full_unstemmed |
Lax orthogonal factorisation systems |
title_sort |
Lax orthogonal factorisation systems |
author |
Clementino, Maria Manuel |
author_facet |
Clementino, Maria Manuel Lopez Franco, Ignacio |
author_role |
author |
author2 |
Lopez Franco, Ignacio |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Clementino, Maria Manuel Lopez Franco, Ignacio |
description |
This paper introduces lax orthogonal algebraic weak factorisation systems on 2-categories and describes a method of constructing them. This method rests in the notion of simple 2-monad, that is a generalisation of the simple reflections studied by Cassidy, Hébert and Kelly. Each simple 2-monad on a finitely complete 2-category gives rise to a lax orthogonal algebraic weak factorisation system, and an example of a simple 2-monad is given by completion under a class of colimits. The notions of KZ lifting operation, lax natural lifting operation and lax orthogonality between morphisms are studied. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10-22 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/43633 http://hdl.handle.net/10316/43633 https://doi.org/10.1016/j.aim.2016.07.028 https://doi.org/10.1016/j.aim.2016.07.028 |
url |
http://hdl.handle.net/10316/43633 https://doi.org/10.1016/j.aim.2016.07.028 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
http://www.sciencedirect.com/science/article/pii/S0001870816309604 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133821170352128 |