SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations

Detalhes bibliográficos
Autor(a) principal: Rosário-Ferreira, Nícia
Data de Publicação: 2021
Outros Autores: Guimarães, Victor, Costa, Vítor S., Moreira, Irina S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10316/103783
https://doi.org/10.1186/s12859-021-04397-w
Resumo: Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus
id RCAP_23a0a345186752e39b46cdfc476a2dbd
oai_identifier_str oai:estudogeral.uc.pt:10316/103783
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associationsDisease-disease associationsNatural language processingBiomedical text-miningDeep learningBlood cancersData MiningKnowledgeDeep LearningBlood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpusSpringer Nature2021-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103783http://hdl.handle.net/10316/103783https://doi.org/10.1186/s12859-021-04397-weng1471-2105Rosário-Ferreira, NíciaGuimarães, VictorCosta, Vítor S.Moreira, Irina S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-28T21:38:54Zoai:estudogeral.uc.pt:10316/103783Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:33.508556Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
title SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
spellingShingle SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
Rosário-Ferreira, Nícia
Disease-disease associations
Natural language processing
Biomedical text-mining
Deep learning
Blood cancers
Data Mining
Knowledge
Deep Learning
title_short SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
title_full SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
title_fullStr SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
title_full_unstemmed SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
title_sort SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
author Rosário-Ferreira, Nícia
author_facet Rosário-Ferreira, Nícia
Guimarães, Victor
Costa, Vítor S.
Moreira, Irina S.
author_role author
author2 Guimarães, Victor
Costa, Vítor S.
Moreira, Irina S.
author2_role author
author
author
dc.contributor.author.fl_str_mv Rosário-Ferreira, Nícia
Guimarães, Victor
Costa, Vítor S.
Moreira, Irina S.
dc.subject.por.fl_str_mv Disease-disease associations
Natural language processing
Biomedical text-mining
Deep learning
Blood cancers
Data Mining
Knowledge
Deep Learning
topic Disease-disease associations
Natural language processing
Biomedical text-mining
Deep learning
Blood cancers
Data Mining
Knowledge
Deep Learning
description Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus
publishDate 2021
dc.date.none.fl_str_mv 2021-10-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10316/103783
http://hdl.handle.net/10316/103783
https://doi.org/10.1186/s12859-021-04397-w
url http://hdl.handle.net/10316/103783
https://doi.org/10.1186/s12859-021-04397-w
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 1471-2105
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Springer Nature
publisher.none.fl_str_mv Springer Nature
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134097829789696