SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10316/103783 https://doi.org/10.1186/s12859-021-04397-w |
Resumo: | Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus |
id |
RCAP_23a0a345186752e39b46cdfc476a2dbd |
---|---|
oai_identifier_str |
oai:estudogeral.uc.pt:10316/103783 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associationsDisease-disease associationsNatural language processingBiomedical text-miningDeep learningBlood cancersData MiningKnowledgeDeep LearningBlood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpusSpringer Nature2021-10-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://hdl.handle.net/10316/103783http://hdl.handle.net/10316/103783https://doi.org/10.1186/s12859-021-04397-weng1471-2105Rosário-Ferreira, NíciaGuimarães, VictorCosta, Vítor S.Moreira, Irina S.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2022-11-28T21:38:54Zoai:estudogeral.uc.pt:10316/103783Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T21:20:33.508556Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
title |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
spellingShingle |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations Rosário-Ferreira, Nícia Disease-disease associations Natural language processing Biomedical text-mining Deep learning Blood cancers Data Mining Knowledge Deep Learning |
title_short |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
title_full |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
title_fullStr |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
title_full_unstemmed |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
title_sort |
SicknessMiner: a deep-learning-driven text-mining tool to abridge disease-disease associations |
author |
Rosário-Ferreira, Nícia |
author_facet |
Rosário-Ferreira, Nícia Guimarães, Victor Costa, Vítor S. Moreira, Irina S. |
author_role |
author |
author2 |
Guimarães, Victor Costa, Vítor S. Moreira, Irina S. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Rosário-Ferreira, Nícia Guimarães, Victor Costa, Vítor S. Moreira, Irina S. |
dc.subject.por.fl_str_mv |
Disease-disease associations Natural language processing Biomedical text-mining Deep learning Blood cancers Data Mining Knowledge Deep Learning |
topic |
Disease-disease associations Natural language processing Biomedical text-mining Deep learning Blood cancers Data Mining Knowledge Deep Learning |
description |
Blood cancers (BCs) are responsible for over 720 K yearly deaths worldwide. Their prevalence and mortality-rate uphold the relevance of research related to BCs. Despite the availability of different resources establishing Disease-Disease Associations (DDAs), the knowledge is scattered and not accessible in a straightforward way to the scientific community. Here, we propose SicknessMiner, a biomedical Text-Mining (TM) approach towards the centralization of DDAs. Our methodology encompasses Named Entity Recognition (NER) and Named Entity Normalization (NEN) steps, and the DDAs retrieved were compared to the DisGeNET resource for qualitative and quantitative comparison. Results: We obtained the DDAs via co-mention using our SicknessMiner or gene- or variant-disease similarity on DisGeNET. SicknessMiner was able to retrieve around 92% of the DisGeNET results and nearly 15% of the SicknessMiner results were specific to our pipeline. Conclusions: SicknessMiner is a valuable tool to extract disease-disease relationship from RAW input corpus |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10-04 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10316/103783 http://hdl.handle.net/10316/103783 https://doi.org/10.1186/s12859-021-04397-w |
url |
http://hdl.handle.net/10316/103783 https://doi.org/10.1186/s12859-021-04397-w |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1471-2105 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Springer Nature |
publisher.none.fl_str_mv |
Springer Nature |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134097829789696 |