Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Ariana Soraia Carreira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/10546
Resumo: Cancer is one of the leading causes of death worldwide and its incidence is expected to continue to increase over the next few decades. Such is explained by the non-specific toxicity and reduced therapeutic efficacy displayed by conventional treatments currently used in the clinic, namely surgery, chemotherapy, and radiotherapy. Particularly, chemotherapeutic agents are rapidly degraded and present a reduced solubility and selectivity to cancer cells. Among the new therapeutic approaches that have been developed, the application of nanomaterials capable of mediating a photothermal effect (i.e. increasing the temperature in response to a light stimulus with a specific wavelength), to induce the cancer cell deaths have been gaining increased attention. Among the several nanomaterials applied in photothermal therapy (PTT), gold core silica shell (AuMSS) nanoparticles presented excellent physicochemical properties that allow their application as photothermal and drug delivery agents. Different parameters of the gold core (e.g. size, shape) can be optimized to improve the photothermal capacity of these nanoparticles, and consequently their therapeutic efficacy. Additionally, the combination of AuMSS nanoparticles with other materials and molecules can also improve their photothermal effectiveness. However, despite the high therapeutic potential of AuMSS nanoparticles, their clinical application is hampered by their reduced circulation time in the bloodstream and lack of specificity to the tumoral tissue. Taking this into account, the research work developed during the second year of my MSc aimed to develop a new surface functionalization for rod-shaped AuMSS nanoparticles, based in biofunctional polymers to increase both its half-life in the bloodstream and internalization by cancer cells. For this purpose, the rod-shaped AuMSS nanoparticles were chemically modified with Polyethyleneglycol methyl ether (PEG-CH3) and Gelatin (GEL). The PEG-CH3 was chosen due to its amphiphilic nature and high solubility, which reduces the protein adsorption on the nanoparticles’ surface and consequently increases its blood circulation time. On the other hand, GEL is a natural polymer that contains arginine-glycine-aspartic acid (RGD) amino acid sequences with specificity for receptors overexpressed in cancer cells. Simultaneously, the encapsulation of IR780 was also tested for the first time in AuMSS nanoparticles to increase the photothermal and photodynamic capacity, and consequently its therapeutic potential. The obtained results demonstrated that the functionalization of rod-shaped AuMSS nanoparticles with GEL and PEG-CH3 polymers led to a neutralization of the surface charge from -23 to -7.46 mV. The successful incorporation of the polymers on nanoparticles surface was also confirmed by thermogravimetric analysis (TGA) and by Fourier transform infrared spectroscopy (FTIR). The in vitro studies demonstrated the biocompatibility of the different nanoformulations when in contact with cancer cells (cervical cancer) and healthy cells (fibroblasts) up to the maximum tested concentration of 200 µg.mL-1 . Additionally, the AuMSS functionalization with GEL increased their internalization by cancer cells without affecting their photothermal capacity. Otherwise, it was also observed that the encapsulation of IR780 resulted in an enhanced photothermal capacity of AuMSS/T-PEG-CH3/T-GEL nanoparticles and increased the generation of reactive oxygen species (ROS) upon irradiation with a NIR laser. Finally, the AuMSS/T-PEG-CH3/T-GEL nanoparticles were capable of effectively inducing the death of cancer cells. In summary, the obtained results confirm the successful functionalization of AuMSS nanoparticles with the GEL and PEG-CH3. Additionally, the potential of the AuMSS/IR780 combination was also demonstrated, where this nanosystem can simultaneously perform PTT and photodynamic therapy (PDT), which translates to an enhanced anticancer capacity.
id RCAP_24358e9eb5b06d7efb38472a74509d30
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/10546
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development and functionalization of gold nanoparticles with silica coating for application in cancer therapyIr780CancroGelNanopartículas de Ouro Com Revestimento de SílicaPeg-Ch3.Terapia FototérmicaDomínio/Área Científica::Ciências Médicas::Ciências BiomédicasCancer is one of the leading causes of death worldwide and its incidence is expected to continue to increase over the next few decades. Such is explained by the non-specific toxicity and reduced therapeutic efficacy displayed by conventional treatments currently used in the clinic, namely surgery, chemotherapy, and radiotherapy. Particularly, chemotherapeutic agents are rapidly degraded and present a reduced solubility and selectivity to cancer cells. Among the new therapeutic approaches that have been developed, the application of nanomaterials capable of mediating a photothermal effect (i.e. increasing the temperature in response to a light stimulus with a specific wavelength), to induce the cancer cell deaths have been gaining increased attention. Among the several nanomaterials applied in photothermal therapy (PTT), gold core silica shell (AuMSS) nanoparticles presented excellent physicochemical properties that allow their application as photothermal and drug delivery agents. Different parameters of the gold core (e.g. size, shape) can be optimized to improve the photothermal capacity of these nanoparticles, and consequently their therapeutic efficacy. Additionally, the combination of AuMSS nanoparticles with other materials and molecules can also improve their photothermal effectiveness. However, despite the high therapeutic potential of AuMSS nanoparticles, their clinical application is hampered by their reduced circulation time in the bloodstream and lack of specificity to the tumoral tissue. Taking this into account, the research work developed during the second year of my MSc aimed to develop a new surface functionalization for rod-shaped AuMSS nanoparticles, based in biofunctional polymers to increase both its half-life in the bloodstream and internalization by cancer cells. For this purpose, the rod-shaped AuMSS nanoparticles were chemically modified with Polyethyleneglycol methyl ether (PEG-CH3) and Gelatin (GEL). The PEG-CH3 was chosen due to its amphiphilic nature and high solubility, which reduces the protein adsorption on the nanoparticles’ surface and consequently increases its blood circulation time. On the other hand, GEL is a natural polymer that contains arginine-glycine-aspartic acid (RGD) amino acid sequences with specificity for receptors overexpressed in cancer cells. Simultaneously, the encapsulation of IR780 was also tested for the first time in AuMSS nanoparticles to increase the photothermal and photodynamic capacity, and consequently its therapeutic potential. The obtained results demonstrated that the functionalization of rod-shaped AuMSS nanoparticles with GEL and PEG-CH3 polymers led to a neutralization of the surface charge from -23 to -7.46 mV. The successful incorporation of the polymers on nanoparticles surface was also confirmed by thermogravimetric analysis (TGA) and by Fourier transform infrared spectroscopy (FTIR). The in vitro studies demonstrated the biocompatibility of the different nanoformulations when in contact with cancer cells (cervical cancer) and healthy cells (fibroblasts) up to the maximum tested concentration of 200 µg.mL-1 . Additionally, the AuMSS functionalization with GEL increased their internalization by cancer cells without affecting their photothermal capacity. Otherwise, it was also observed that the encapsulation of IR780 resulted in an enhanced photothermal capacity of AuMSS/T-PEG-CH3/T-GEL nanoparticles and increased the generation of reactive oxygen species (ROS) upon irradiation with a NIR laser. Finally, the AuMSS/T-PEG-CH3/T-GEL nanoparticles were capable of effectively inducing the death of cancer cells. In summary, the obtained results confirm the successful functionalization of AuMSS nanoparticles with the GEL and PEG-CH3. Additionally, the potential of the AuMSS/IR780 combination was also demonstrated, where this nanosystem can simultaneously perform PTT and photodynamic therapy (PDT), which translates to an enhanced anticancer capacity.O cancro é uma das principais causas de morte em todo o mundo, cuja incidência se prevê que continue a aumentar ao longo das próximas décadas. A elevada taxa de mortalidade associada a esta doença é explicada pela toxicidade não específica e reduzida eficácia terapêutica dos tratamentos usados na clínica, nomeadamente a cirurgia, quimioterapia e radioterapia. Em particular, os agentes quimioterapêuticos apresentam uma rápida degradação bem como reduzida solubilidade e seletividade para as células cancerígenas. Dentro das novas abordagens terapêuticas que têm vindo a ser desenvolvidas, destaca-se a aplicação de nanomateriais capazes de mediar um efeito fototérmico (i.e. aumentar a temperatura em resposta a um estímulo de luz com um determinado comprimento de onda), com o objetivo de eliminar as células cancerígenas. Dentro dos vários nanomateriais aplicados na terapia fototérmica (PTT), destacam-se as nanopartículas de ouro revestidas com sílica (AuMSS) que apresentam excelentes propriedades físico-químicas que permitem a sua ação como agentes fototérmicos e de entrega de fármacos. Os diferentes parâmetros do núcleo de ouro (e.g. tamanho, forma) podem ser ajustados para melhorar a capacidade fototérmica destas nanopartículas e, consequentemente, a sua eficácia terapêutica. Adicionalmente, a combinação das nanopartículas AuMSS com outros materiais e moléculas pode melhorar a eficácia fototérmica das mesmas. Apesar do elevado potencial terapêutico apresentado por estas nanopartículas, a sua aplicação clínica é dificultada pelo seu reduzido tempo de circulação na corrente sanguínea e baixa especificidade para o tecido tumoral. Desta forma, o trabalho desenvolvido durante o meu 2º ano de mestrado teve como objetivo proceder à funcionalização da superfície das nanopartículas AuMSS em forma de bastonete com polímeros biofuncionais, com a finalidade de aumentar o seu tempo de circulação na corrente sanguínea e ainda incrementar a sua internalização pelas células cancerígenas. Para tal, as AuMSS em forma de bastonete foram quimicamente modificadas com Polietilenoglicol metil éter (PEG-CH3) e Gelatina (GEL). O PEG-CH3 foi escolhido devido à sua natureza anfifílica e elevada solubilidade, propriedades estas que permitem reduzir a adsorção de proteínas na superfície das nanopartículas e, consequentemente, aumentar o seu tempo de circulação na corrente sanguínea. Por outro lado, a GEL trata-se de um polímero natural que possui na sua constituição sequências de aminoácidos de arginina-glicina-ácido aspártico (RGD) cujos recetores estão sobreexpressos nas células cancerígenas. Paralelamente, o IR780 foi também encapsulado pela primeira vez nas nanopartículas AuMSS de forma a aumentar a sua capacidade fototérmica e fotodinâmica e, consequentemente, o seu potencial terapêutico. Os resultados obtidos neste estudo demonstraram que o revestimento dos AuMSS em forma de bastonete com os polímeros GEL e PEG-CH3 permitiu a neutralização da carga de superfície das nanopartículas de -23 para -7.46 mV. O sucesso da ligação dos polímeros às nanopartículas foi ainda confirmado por análise termogravimétrica (TGA) e por espectroscopia de infravermelho por transformada de Fourier (FTIR). Nos estudos efetuados in vitro, as nanoformulações mostraram ser biocompatíveis quando em contacto com células cancerígenas (cancro do colo do útero) e células saudáveis (fibroblastos) até à máxima concentração testada de 200 µg.mL-1 . Adicionalmente a funcionalização das nanopartículas com GEL aumentou a sua internalização pelas células cancerígenas não afetando a sua capacidade fototérmica. Contudo a encapsulação do IR780 (IR780@AuMSS/T-PEG-CH3/T-GEL) promoveu um aumento da capacidade fototérmica das nanopartículas e da geração de espécies reativas de oxigénio (ROS). Por fim, todas as nanoformulações estudadas foram capazes de induzir eficazmente a morte das células cancerígenas. Em suma, os resultados obtidos confirmam que a funcionalização das nanopartículas com os polímeros GEL e PEG-CH3 foi bem-sucedida. Adicionalmente, foi ainda demostrado o potencial da combinação das nanopartículas AuMSS com o IR780, podendo estas realizar simultaneamente PTT e terapia fotodinâmica com direcionamento para as células cancerígenas.Correia, Ilídio Joaquim SobreiraMoreira, André FerreiraRodrigues, Ana Carolina FélixuBibliorumGonçalves, Ariana Soraia Carreira2023-09-22T00:30:21Z2020-10-192020-09-212020-10-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/10546TID:202545784enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:52:27Zoai:ubibliorum.ubi.pt:10400.6/10546Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:50:28.653174Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
title Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
spellingShingle Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
Gonçalves, Ariana Soraia Carreira
Ir780
Cancro
Gel
Nanopartículas de Ouro Com Revestimento de Sílica
Peg-Ch3.
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
title_short Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
title_full Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
title_fullStr Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
title_full_unstemmed Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
title_sort Development and functionalization of gold nanoparticles with silica coating for application in cancer therapy
author Gonçalves, Ariana Soraia Carreira
author_facet Gonçalves, Ariana Soraia Carreira
author_role author
dc.contributor.none.fl_str_mv Correia, Ilídio Joaquim Sobreira
Moreira, André Ferreira
Rodrigues, Ana Carolina Félix
uBibliorum
dc.contributor.author.fl_str_mv Gonçalves, Ariana Soraia Carreira
dc.subject.por.fl_str_mv Ir780
Cancro
Gel
Nanopartículas de Ouro Com Revestimento de Sílica
Peg-Ch3.
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
topic Ir780
Cancro
Gel
Nanopartículas de Ouro Com Revestimento de Sílica
Peg-Ch3.
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
description Cancer is one of the leading causes of death worldwide and its incidence is expected to continue to increase over the next few decades. Such is explained by the non-specific toxicity and reduced therapeutic efficacy displayed by conventional treatments currently used in the clinic, namely surgery, chemotherapy, and radiotherapy. Particularly, chemotherapeutic agents are rapidly degraded and present a reduced solubility and selectivity to cancer cells. Among the new therapeutic approaches that have been developed, the application of nanomaterials capable of mediating a photothermal effect (i.e. increasing the temperature in response to a light stimulus with a specific wavelength), to induce the cancer cell deaths have been gaining increased attention. Among the several nanomaterials applied in photothermal therapy (PTT), gold core silica shell (AuMSS) nanoparticles presented excellent physicochemical properties that allow their application as photothermal and drug delivery agents. Different parameters of the gold core (e.g. size, shape) can be optimized to improve the photothermal capacity of these nanoparticles, and consequently their therapeutic efficacy. Additionally, the combination of AuMSS nanoparticles with other materials and molecules can also improve their photothermal effectiveness. However, despite the high therapeutic potential of AuMSS nanoparticles, their clinical application is hampered by their reduced circulation time in the bloodstream and lack of specificity to the tumoral tissue. Taking this into account, the research work developed during the second year of my MSc aimed to develop a new surface functionalization for rod-shaped AuMSS nanoparticles, based in biofunctional polymers to increase both its half-life in the bloodstream and internalization by cancer cells. For this purpose, the rod-shaped AuMSS nanoparticles were chemically modified with Polyethyleneglycol methyl ether (PEG-CH3) and Gelatin (GEL). The PEG-CH3 was chosen due to its amphiphilic nature and high solubility, which reduces the protein adsorption on the nanoparticles’ surface and consequently increases its blood circulation time. On the other hand, GEL is a natural polymer that contains arginine-glycine-aspartic acid (RGD) amino acid sequences with specificity for receptors overexpressed in cancer cells. Simultaneously, the encapsulation of IR780 was also tested for the first time in AuMSS nanoparticles to increase the photothermal and photodynamic capacity, and consequently its therapeutic potential. The obtained results demonstrated that the functionalization of rod-shaped AuMSS nanoparticles with GEL and PEG-CH3 polymers led to a neutralization of the surface charge from -23 to -7.46 mV. The successful incorporation of the polymers on nanoparticles surface was also confirmed by thermogravimetric analysis (TGA) and by Fourier transform infrared spectroscopy (FTIR). The in vitro studies demonstrated the biocompatibility of the different nanoformulations when in contact with cancer cells (cervical cancer) and healthy cells (fibroblasts) up to the maximum tested concentration of 200 µg.mL-1 . Additionally, the AuMSS functionalization with GEL increased their internalization by cancer cells without affecting their photothermal capacity. Otherwise, it was also observed that the encapsulation of IR780 resulted in an enhanced photothermal capacity of AuMSS/T-PEG-CH3/T-GEL nanoparticles and increased the generation of reactive oxygen species (ROS) upon irradiation with a NIR laser. Finally, the AuMSS/T-PEG-CH3/T-GEL nanoparticles were capable of effectively inducing the death of cancer cells. In summary, the obtained results confirm the successful functionalization of AuMSS nanoparticles with the GEL and PEG-CH3. Additionally, the potential of the AuMSS/IR780 combination was also demonstrated, where this nanosystem can simultaneously perform PTT and photodynamic therapy (PDT), which translates to an enhanced anticancer capacity.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-19
2020-09-21
2020-10-19T00:00:00Z
2023-09-22T00:30:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/10546
TID:202545784
url http://hdl.handle.net/10400.6/10546
identifier_str_mv TID:202545784
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136395323768832