Development of multifunctional IR780 based nanomaterials for cancer therapy

Detalhes bibliográficos
Autor(a) principal: Leitao, Miguel Marques
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/10551
Resumo: Breast cancer is a common cause of death among women. This scenario is in part explained by the limitations presented by the treatments currently used in the clinic (e.g. radiotherapy, chemotherapy), which display a low therapeutic efficacy and induce adverse side effects. In this way, it is necessary to develop innovative strategies that propel the breast cancer therapy efficacy. Among the different therapeutic strategies under investigation, cancer photothermal therapy mediated by nanomaterials has been showing promising results. This type of therapy takes advantage from the nanomaterials’ physico-chemical properties, that enable their tumor accumulation. Subsequently, the tumor zone is irradiated with Near Infrared (NIR; 750-1000 nm) light and the tumor-homed nanomaterials absorb this energy, releasing it as heat that causes damage to cancer cells. From the plethora of nanomaterials with potential to be applied in cancer photothermal therapy, Graphene Oxide (GO) is a promising candidate due to its NIR absorption and loading capacity. However, as-synthesized GO lacks colloidal stability, i.e., it precipitates when in contact with biological fluids. On the other hand, GO displays a modest photothermal capacity, requiring the use of high doses or intense radiation to achieve the desired therapeutic effect. In the work developed during my MSc, GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780 (a NIR photoabsorber), for the first time, to improve its colloidal stability and phototherapeutic capacity, respectively. The obtained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and an appropriate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biological relevant media (at least up to 48 h), while GO without SBMA functionalization promptly precipitated in the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold (at 808 nm), leading to a 1.2-times higher photothermal heating. In in vitro cell studies, the conjugation of NIR irradiation with SBMA-functionalized GO could reduce breast cancer cells’ viability to 73 %. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells’ viability decreased to 20 %. Overall, the IR780 loaded SBMA-functionalized GO nanomaterials have promising properties for application in breast cancer phototherapy.
id RCAP_dd5a79e2c96c541983876ee948207f57
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/10551
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Development of multifunctional IR780 based nanomaterials for cancer therapyCancroIr780Óxido de GrafenoRevestimentos ZwiteriónicosTerapia FototérmicaDomínio/Área Científica::Ciências Médicas::Ciências BiomédicasBreast cancer is a common cause of death among women. This scenario is in part explained by the limitations presented by the treatments currently used in the clinic (e.g. radiotherapy, chemotherapy), which display a low therapeutic efficacy and induce adverse side effects. In this way, it is necessary to develop innovative strategies that propel the breast cancer therapy efficacy. Among the different therapeutic strategies under investigation, cancer photothermal therapy mediated by nanomaterials has been showing promising results. This type of therapy takes advantage from the nanomaterials’ physico-chemical properties, that enable their tumor accumulation. Subsequently, the tumor zone is irradiated with Near Infrared (NIR; 750-1000 nm) light and the tumor-homed nanomaterials absorb this energy, releasing it as heat that causes damage to cancer cells. From the plethora of nanomaterials with potential to be applied in cancer photothermal therapy, Graphene Oxide (GO) is a promising candidate due to its NIR absorption and loading capacity. However, as-synthesized GO lacks colloidal stability, i.e., it precipitates when in contact with biological fluids. On the other hand, GO displays a modest photothermal capacity, requiring the use of high doses or intense radiation to achieve the desired therapeutic effect. In the work developed during my MSc, GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780 (a NIR photoabsorber), for the first time, to improve its colloidal stability and phototherapeutic capacity, respectively. The obtained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and an appropriate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biological relevant media (at least up to 48 h), while GO without SBMA functionalization promptly precipitated in the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold (at 808 nm), leading to a 1.2-times higher photothermal heating. In in vitro cell studies, the conjugation of NIR irradiation with SBMA-functionalized GO could reduce breast cancer cells’ viability to 73 %. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells’ viability decreased to 20 %. Overall, the IR780 loaded SBMA-functionalized GO nanomaterials have promising properties for application in breast cancer phototherapy.O cancro da mama é o tipo de cancro que mais afeta as mulheres. Este cenário deve-se às limitações das terapias utilizadas em meio clínico (quimioterapia e radioterapia), as quais apresentam uma baixa eficácia e efeitos secundários associados. Desta forma, existe uma necessidade premente de desenvolver estratégias inovadoras para o tratamento deste tipo de cancro. Na atualidade, diferentes grupos de investigação estão focados no desenvolvimento de nanomateriais para aplicação na terapia fototérmica do cancro. Este tipo de abordagem terapêutica tem por base a acumulação dos nanomateriais na região tumoral e a sua posterior irradiação com luz com um comprimento de onda na zona do infravermelho próximo (em inglês: Near Infrared (NIR)). Os nanomateriais acumulados no tumor absorvem esta radiação e convertem-na em calor que causa danos nas células cancerígenas. Entre os diferentes nanomateriais desenvolvidos até ao momento, o óxido de grafeno (em inglês: Graphene Oxide (GO)) apresenta-se como um candidato bastante promissor para aplicação na terapia fototérmica do cancro devido à sua capacidade de absorção no NIR e de encapsulamento de biomoléculas. Contudo, o GO apresenta uma baixa estabilidade coloidal, i.e., precipita facilmente quando em contacto com fluídos biológicos. Para além disto, este nanomaterial possui uma baixa capacidade fototérmica, sendo preciso recorrer à administração de elevadas doses ou ao uso de radiação NIR intensa de forma a alcançar um efeito terapêutico adequado. No trabalho de investigação desenvolvido durante o meu segundo ano de mestrado, o GO foi revestido com um polímero anfifílico contendo segmentos de metacrilato de sulfobetaína (SBMA) de forma a aumentar a sua estabilidade coloidal. Posteriormente, o IR780 foi incorporado neste nanomaterial funcionalizado, com o objetivo de melhorar a sua capacidade fototérmica. Os resultados obtidos no presente estudo demonstraram que o GO funcionalizado com SBMA apresenta uma carga de superfície neutra e que é citocompatível. Para além disso, o GO funcionalizado com SBMA manteve a sua distribuição de tamanhos praticamente inalterada, pelo menos durante 48 h, quando em contacto com meio com relevância biológica, possuindo assim uma elevada estabilidade coloidal. Em contraste, os nanomateriais de GO não funcionalizados precipitaram rapidamente em meio de cultura celular. Ao encapsular o IR780 no GO funcionalizado com SBMA, a sua absorção no NIR (a 808 nm) aumentou em cerca de 2,7 vezes, o que lhe permitiu gerar um aumento de temperatura que foi 1,2 vezes maior. Nos estudos in vitro, a conjugação da luz NIR com o GO funcionalizado com SBMA apenas reduziu a viabilidade das células do cancro da mama para 73 %. Em contraste, a combinação da luz NIR com GO funcionalizado com SBMA contendo o IR780, induziu uma redução da viabilidade das células cancerígenas para 20 %. Estes resultados confirmam o potencial deste nanomaterial para aplicação na terapia fototérmica do cancro da mama.Diogo, Duarte Miguel de MeloCorreia, Ilídio Joaquim SobreiraAlves, Cátia GomesuBibliorumLeitao, Miguel Marques2023-09-14T00:30:21Z2020-10-192020-09-152020-10-19T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10400.6/10551TID:202545830enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-11-27T12:34:33Zoai:ubibliorum.ubi.pt:10400.6/10551Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-11-27T12:34:33Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Development of multifunctional IR780 based nanomaterials for cancer therapy
title Development of multifunctional IR780 based nanomaterials for cancer therapy
spellingShingle Development of multifunctional IR780 based nanomaterials for cancer therapy
Leitao, Miguel Marques
Cancro
Ir780
Óxido de Grafeno
Revestimentos Zwiteriónicos
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
title_short Development of multifunctional IR780 based nanomaterials for cancer therapy
title_full Development of multifunctional IR780 based nanomaterials for cancer therapy
title_fullStr Development of multifunctional IR780 based nanomaterials for cancer therapy
title_full_unstemmed Development of multifunctional IR780 based nanomaterials for cancer therapy
title_sort Development of multifunctional IR780 based nanomaterials for cancer therapy
author Leitao, Miguel Marques
author_facet Leitao, Miguel Marques
author_role author
dc.contributor.none.fl_str_mv Diogo, Duarte Miguel de Melo
Correia, Ilídio Joaquim Sobreira
Alves, Cátia Gomes
uBibliorum
dc.contributor.author.fl_str_mv Leitao, Miguel Marques
dc.subject.por.fl_str_mv Cancro
Ir780
Óxido de Grafeno
Revestimentos Zwiteriónicos
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
topic Cancro
Ir780
Óxido de Grafeno
Revestimentos Zwiteriónicos
Terapia Fototérmica
Domínio/Área Científica::Ciências Médicas::Ciências Biomédicas
description Breast cancer is a common cause of death among women. This scenario is in part explained by the limitations presented by the treatments currently used in the clinic (e.g. radiotherapy, chemotherapy), which display a low therapeutic efficacy and induce adverse side effects. In this way, it is necessary to develop innovative strategies that propel the breast cancer therapy efficacy. Among the different therapeutic strategies under investigation, cancer photothermal therapy mediated by nanomaterials has been showing promising results. This type of therapy takes advantage from the nanomaterials’ physico-chemical properties, that enable their tumor accumulation. Subsequently, the tumor zone is irradiated with Near Infrared (NIR; 750-1000 nm) light and the tumor-homed nanomaterials absorb this energy, releasing it as heat that causes damage to cancer cells. From the plethora of nanomaterials with potential to be applied in cancer photothermal therapy, Graphene Oxide (GO) is a promising candidate due to its NIR absorption and loading capacity. However, as-synthesized GO lacks colloidal stability, i.e., it precipitates when in contact with biological fluids. On the other hand, GO displays a modest photothermal capacity, requiring the use of high doses or intense radiation to achieve the desired therapeutic effect. In the work developed during my MSc, GO was functionalized with an amphiphilic polymer containing [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA) brushes and was loaded with IR780 (a NIR photoabsorber), for the first time, to improve its colloidal stability and phototherapeutic capacity, respectively. The obtained results revealed that the SBMA-functionalized GO displays a suitable size distribution, neutral surface charge and an appropriate cytocompatibility. Furthermore, the SBMA-functionalized GO exhibited an improved colloidal stability in biological relevant media (at least up to 48 h), while GO without SBMA functionalization promptly precipitated in the same conditions. By loading IR780 into the SBMA-functionalized GO, its NIR absorption increased by 2.7-fold (at 808 nm), leading to a 1.2-times higher photothermal heating. In in vitro cell studies, the conjugation of NIR irradiation with SBMA-functionalized GO could reduce breast cancer cells’ viability to 73 %. In stark contrast, by combining IR780 loaded SBMA-functionalized GO and NIR radiation, the cancer cells’ viability decreased to 20 %. Overall, the IR780 loaded SBMA-functionalized GO nanomaterials have promising properties for application in breast cancer phototherapy.
publishDate 2020
dc.date.none.fl_str_mv 2020-10-19
2020-09-15
2020-10-19T00:00:00Z
2023-09-14T00:30:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/10551
TID:202545830
url http://hdl.handle.net/10400.6/10551
identifier_str_mv TID:202545830
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv mluisa.alvim@gmail.com
_version_ 1817549651274891264