Clustering genomic words in human DNA using peaks and trends of distributions
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/30267 |
Resumo: | In this work we seek clusters of genomic words in human DNA by studying their inter-word lag distributions. Due to the particularly spiked nature of these histograms, a clustering procedure is proposed that first decomposes each distribution into a baseline and a peak distribution. An outlier-robust fitting method is used to estimate the baseline distribution (the ‘trend’), and a sparse vector of detrended data captures the peak structure. A simulation study demonstrates the effectiveness of the clustering procedure in grouping distributions with similar peak behavior and/or baseline features. The procedure is applied to investigate similarities between the distribution patterns of genomic words of lengths 3 and 5 in the human genome. These experiments demonstrate the potential of the new method for identifying words with similar distance patterns. |
id |
RCAP_2435b0b255c5cbcb7c7f34f70a060d39 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/30267 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Clustering genomic words in human DNA using peaks and trends of distributionsClassificationPattern recognitionRobustnessWord distancesIn this work we seek clusters of genomic words in human DNA by studying their inter-word lag distributions. Due to the particularly spiked nature of these histograms, a clustering procedure is proposed that first decomposes each distribution into a baseline and a peak distribution. An outlier-robust fitting method is used to estimate the baseline distribution (the ‘trend’), and a sparse vector of detrended data captures the peak structure. A simulation study demonstrates the effectiveness of the clustering procedure in grouping distributions with similar peak behavior and/or baseline features. The procedure is applied to investigate similarities between the distribution patterns of genomic words of lengths 3 and 5 in the human genome. These experiments demonstrate the potential of the new method for identifying words with similar distance patterns.Springer2021-01-11T10:58:24Z2020-03-01T00:00:00Z2020-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/30267eng1862-534710.1007/s11634-019-00362-xTavares, Ana HelenaRaymaekers, JakobRousseeuw, Peter J.Brito, PaulaAfreixo, Verainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:58:28Zoai:ria.ua.pt:10773/30267Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:02:23.672853Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Clustering genomic words in human DNA using peaks and trends of distributions |
title |
Clustering genomic words in human DNA using peaks and trends of distributions |
spellingShingle |
Clustering genomic words in human DNA using peaks and trends of distributions Tavares, Ana Helena Classification Pattern recognition Robustness Word distances |
title_short |
Clustering genomic words in human DNA using peaks and trends of distributions |
title_full |
Clustering genomic words in human DNA using peaks and trends of distributions |
title_fullStr |
Clustering genomic words in human DNA using peaks and trends of distributions |
title_full_unstemmed |
Clustering genomic words in human DNA using peaks and trends of distributions |
title_sort |
Clustering genomic words in human DNA using peaks and trends of distributions |
author |
Tavares, Ana Helena |
author_facet |
Tavares, Ana Helena Raymaekers, Jakob Rousseeuw, Peter J. Brito, Paula Afreixo, Vera |
author_role |
author |
author2 |
Raymaekers, Jakob Rousseeuw, Peter J. Brito, Paula Afreixo, Vera |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Tavares, Ana Helena Raymaekers, Jakob Rousseeuw, Peter J. Brito, Paula Afreixo, Vera |
dc.subject.por.fl_str_mv |
Classification Pattern recognition Robustness Word distances |
topic |
Classification Pattern recognition Robustness Word distances |
description |
In this work we seek clusters of genomic words in human DNA by studying their inter-word lag distributions. Due to the particularly spiked nature of these histograms, a clustering procedure is proposed that first decomposes each distribution into a baseline and a peak distribution. An outlier-robust fitting method is used to estimate the baseline distribution (the ‘trend’), and a sparse vector of detrended data captures the peak structure. A simulation study demonstrates the effectiveness of the clustering procedure in grouping distributions with similar peak behavior and/or baseline features. The procedure is applied to investigate similarities between the distribution patterns of genomic words of lengths 3 and 5 in the human genome. These experiments demonstrate the potential of the new method for identifying words with similar distance patterns. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-03-01T00:00:00Z 2020-03 2021-01-11T10:58:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/30267 |
url |
http://hdl.handle.net/10773/30267 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1862-5347 10.1007/s11634-019-00362-x |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137679378481152 |