Automatic classification of fish germ cells through optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/IEMBS.2011.6091259 http://hdl.handle.net/11449/73085 |
Resumo: | The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE. |
id |
UNSP_a57c89fb0c2ff92b64d395f020969ef4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/73085 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automatic classification of fish germ cells through optimum-path forestAutomatic classificationGerm cellsMachine learning techniquesRecognition accuracySupervised pattern recognitionPattern recognitionCellsThe spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE.Department of Computing Universidade Estadual Paulista (UNESP), BauruDepartment of Biological Sciences Universidade Estadual Paulista (UNESP), BauruSouthwest Paulista College, AvaréDepartment of Computing Universidade Estadual Paulista (UNESP), BauruDepartment of Biological Sciences Universidade Estadual Paulista (UNESP), BauruUniversidade Estadual Paulista (Unesp)Southwest Paulista CollegePapa, João Paulo [UNESP]Gutierrez, Mario E. M. [UNESP]Nakamura, Rodrigo Y. M. [UNESP]Papa, Luciene P.Vicentini, Irene Bastos Franceschini [UNESP]Vicentini, Carlos Alberto [UNESP]2014-05-27T11:26:20Z2014-05-27T11:26:20Z2011-12-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject5084-5087http://dx.doi.org/10.1109/IEMBS.2011.6091259Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5084-5087.1557-170Xhttp://hdl.handle.net/11449/7308510.1109/IEMBS.2011.6091259WOS:0002988100040072-s2.0-84055193445903918293274719495814680589219523150094336796923Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSinfo:eu-repo/semantics/openAccess2024-04-23T16:11:20Zoai:repositorio.unesp.br:11449/73085Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:56:03.315581Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automatic classification of fish germ cells through optimum-path forest |
title |
Automatic classification of fish germ cells through optimum-path forest |
spellingShingle |
Automatic classification of fish germ cells through optimum-path forest Papa, João Paulo [UNESP] Automatic classification Germ cells Machine learning techniques Recognition accuracy Supervised pattern recognition Pattern recognition Cells |
title_short |
Automatic classification of fish germ cells through optimum-path forest |
title_full |
Automatic classification of fish germ cells through optimum-path forest |
title_fullStr |
Automatic classification of fish germ cells through optimum-path forest |
title_full_unstemmed |
Automatic classification of fish germ cells through optimum-path forest |
title_sort |
Automatic classification of fish germ cells through optimum-path forest |
author |
Papa, João Paulo [UNESP] |
author_facet |
Papa, João Paulo [UNESP] Gutierrez, Mario E. M. [UNESP] Nakamura, Rodrigo Y. M. [UNESP] Papa, Luciene P. Vicentini, Irene Bastos Franceschini [UNESP] Vicentini, Carlos Alberto [UNESP] |
author_role |
author |
author2 |
Gutierrez, Mario E. M. [UNESP] Nakamura, Rodrigo Y. M. [UNESP] Papa, Luciene P. Vicentini, Irene Bastos Franceschini [UNESP] Vicentini, Carlos Alberto [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Southwest Paulista College |
dc.contributor.author.fl_str_mv |
Papa, João Paulo [UNESP] Gutierrez, Mario E. M. [UNESP] Nakamura, Rodrigo Y. M. [UNESP] Papa, Luciene P. Vicentini, Irene Bastos Franceschini [UNESP] Vicentini, Carlos Alberto [UNESP] |
dc.subject.por.fl_str_mv |
Automatic classification Germ cells Machine learning techniques Recognition accuracy Supervised pattern recognition Pattern recognition Cells |
topic |
Automatic classification Germ cells Machine learning techniques Recognition accuracy Supervised pattern recognition Pattern recognition Cells |
description |
The spermatogenesis is crucial to the species reproduction, and its monitoring may shed light over some important information of such process. Thus, the germ cells quantification can provide useful tools to improve the reproduction cycle. In this paper, we present the first work that address this problem in fishes with machine learning techniques. We show here how to obtain high recognition accuracies in order to identify fish germ cells with several state-of-the-art supervised pattern recognition techniques. © 2011 IEEE. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-12-26 2014-05-27T11:26:20Z 2014-05-27T11:26:20Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/IEMBS.2011.6091259 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5084-5087. 1557-170X http://hdl.handle.net/11449/73085 10.1109/IEMBS.2011.6091259 WOS:000298810004007 2-s2.0-84055193445 9039182932747194 9581468058921952 3150094336796923 |
url |
http://dx.doi.org/10.1109/IEMBS.2011.6091259 http://hdl.handle.net/11449/73085 |
identifier_str_mv |
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 5084-5087. 1557-170X 10.1109/IEMBS.2011.6091259 WOS:000298810004007 2-s2.0-84055193445 9039182932747194 9581468058921952 3150094336796923 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
5084-5087 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128876872728576 |