Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/38406 |
Resumo: | Cardiac health is a big concern, worldwide, with cardiovascular disease (CVDs) being the most predominant cause of death, which makes the better and earlier diagnosis of such illnesses a top priority in public health. The technology supporting medical diagnosis, especially in cardiac CT, such as cardiac computerized tomography angiography (CTA) and CT Myocardial Perfusion(CTP), has been evolving at a fast pace providing a wide range of data on the anatomy and function of the heart. However, this range of data, due to its quantity and richness, is still not fully harnessed and the research to unravel its potential is still in high demand. While several alternatives for the design and development of novel methods exist, e.g., to visualize and explore this data, one important challenge concerns how to make them available for clinicians to test. The aim would be to enable full exploration of these methods in the clinical workflow, from early on, in development, to foster insight into their features and usefulness to inform improvement. In this regard, Project CAD-FACTS, in which this thesis is integrated, explores a modular solution to support the development of cardiac analysis methods by enabling their early deployment to the clinician’s office. To this effect, we define the requirements for such a platform and present the first instance of its development exploring the Open Health Imaging Foundation’s resources, the OHIF Viewer. At its current stage, we demonstrate the feasibility of the approach and the integration of simple image processing and reporting modules in the pipeline. |
id |
RCAP_251fc1917987d7f283708d73f0bde20b |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/38406 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methodsModular software approachesOHIFCardiac imagesCTImage processing and analysisCardiac health is a big concern, worldwide, with cardiovascular disease (CVDs) being the most predominant cause of death, which makes the better and earlier diagnosis of such illnesses a top priority in public health. The technology supporting medical diagnosis, especially in cardiac CT, such as cardiac computerized tomography angiography (CTA) and CT Myocardial Perfusion(CTP), has been evolving at a fast pace providing a wide range of data on the anatomy and function of the heart. However, this range of data, due to its quantity and richness, is still not fully harnessed and the research to unravel its potential is still in high demand. While several alternatives for the design and development of novel methods exist, e.g., to visualize and explore this data, one important challenge concerns how to make them available for clinicians to test. The aim would be to enable full exploration of these methods in the clinical workflow, from early on, in development, to foster insight into their features and usefulness to inform improvement. In this regard, Project CAD-FACTS, in which this thesis is integrated, explores a modular solution to support the development of cardiac analysis methods by enabling their early deployment to the clinician’s office. To this effect, we define the requirements for such a platform and present the first instance of its development exploring the Open Health Imaging Foundation’s resources, the OHIF Viewer. At its current stage, we demonstrate the feasibility of the approach and the integration of simple image processing and reporting modules in the pipeline.A saúde cardíaca é uma das maiores preocupações a nível clínico mundialmente, visto que as doenças cardiovasculares (DCVs) ocupam o primeiro lugar como a causa mais predominante de morte, o que obriga a um diagnóstico melhor e mais precoce de tais doenças, uma prioridade máxima na saúde pública. A tecnologia de suporte a diagnóstico médico, especialmente em CT cardíaco, como tomografia computadorizada de angiografia (CTA) e CT de perfusão miocárdica (CTP), têm evoluindo rapidamente, fornecendo uma ampla gama de dados sobre a anatomia e função do coração. No entanto, esta gama de dados, devido à sua quantidade e densidade, ainda não é totalmente aproveitada e a pesquisa para aproveitar o seu potencial ainda não se encontra no seu estado mais maduro. Embora existam várias alternativas para o projeto e desenvolvimento de novos métodos, por exemplo, para visualizar e explorar esses dados, um desafio importante diz respeito em como torna-los disponíveis para os profissionais de saúde cardiaca testarem. O objetivo seria permitir a exploração completa desses métodos no fluxo de trabalho clínico, desde as suas fases iniciais de desenvolvimento, oferenco assim, informações e aspectos a reter sobre os seus recursos e utilidade suportanto então melhorias nos mesmos. Neste aspecto, o projeto CAD-FACTS, ao qual esta tese está integrada, explora uma solução modular para apoiar o desenvolvimento de métodos de análise cardíaca, permitindo a sua integração no consultório do profissional clínico. Para isso, foram definidos os requisitos para tal plataforma e apresentada uma primeira instância do seu desenvolvimento explorando os recursos da Open Health Imaging Foundation, o OHIF Viewer. No estado atual, foi demonstrada a viabilidade da abordagem através da integração com o trabalho desenvolvido de modulos simples de processamento de imagens e de geração de relatórios de pós-processamento.2023-07-07T08:51:33Z2022-12-14T00:00:00Z2022-12-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10773/38406engAbrantes, João Gabriel Pinto de Matos e Castroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-05-06T04:46:39Zoai:ria.ua.pt:10773/38406Portal AgregadorONGhttps://www.rcaap.pt/oai/openairemluisa.alvim@gmail.comopendoar:71602024-05-06T04:46:39Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
title |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
spellingShingle |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods Abrantes, João Gabriel Pinto de Matos e Castro Modular software approaches OHIF Cardiac images CT Image processing and analysis |
title_short |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
title_full |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
title_fullStr |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
title_full_unstemmed |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
title_sort |
Exploring a modular approach to support the development and validation of cardiac image processing and analysis methods |
author |
Abrantes, João Gabriel Pinto de Matos e Castro |
author_facet |
Abrantes, João Gabriel Pinto de Matos e Castro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Abrantes, João Gabriel Pinto de Matos e Castro |
dc.subject.por.fl_str_mv |
Modular software approaches OHIF Cardiac images CT Image processing and analysis |
topic |
Modular software approaches OHIF Cardiac images CT Image processing and analysis |
description |
Cardiac health is a big concern, worldwide, with cardiovascular disease (CVDs) being the most predominant cause of death, which makes the better and earlier diagnosis of such illnesses a top priority in public health. The technology supporting medical diagnosis, especially in cardiac CT, such as cardiac computerized tomography angiography (CTA) and CT Myocardial Perfusion(CTP), has been evolving at a fast pace providing a wide range of data on the anatomy and function of the heart. However, this range of data, due to its quantity and richness, is still not fully harnessed and the research to unravel its potential is still in high demand. While several alternatives for the design and development of novel methods exist, e.g., to visualize and explore this data, one important challenge concerns how to make them available for clinicians to test. The aim would be to enable full exploration of these methods in the clinical workflow, from early on, in development, to foster insight into their features and usefulness to inform improvement. In this regard, Project CAD-FACTS, in which this thesis is integrated, explores a modular solution to support the development of cardiac analysis methods by enabling their early deployment to the clinician’s office. To this effect, we define the requirements for such a platform and present the first instance of its development exploring the Open Health Imaging Foundation’s resources, the OHIF Viewer. At its current stage, we demonstrate the feasibility of the approach and the integration of simple image processing and reporting modules in the pipeline. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-12-14T00:00:00Z 2022-12-14 2023-07-07T08:51:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/38406 |
url |
http://hdl.handle.net/10773/38406 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
mluisa.alvim@gmail.com |
_version_ |
1817543860488765440 |