Mimetic finite difference methods in image processing

Detalhes bibliográficos
Autor(a) principal: Bazan,C.
Data de Publicação: 2011
Outros Autores: Abouali,M., Castillo,J., Blomgren,P.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Computational & Applied Mathematics
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300012
Resumo: We introduce the use of mimetic methods to the imaging community, for the solution of the initial-value problems ubiquitous in the machine vision and image processing and analysis fields. PDE-based image processing and analysis techniques comprise a host of applications such as noise removal and restoration, deblurring and enhancement, segmentation, edge detection, inpainting, registration, motion analysis, etc. Because of their favorable stability and efficiency properties, semi-implicit finite difference and finite element schemes have been the methods of choice (in that order of preference). We propose a new approach for the numerical solution of these problems based on mimetic methods. The mimetic discretization scheme preserves the continuum properties of the mathematical operators often encountered in the image processing and analysis equations. This is the main contributing factor to the improved performance of the mimetic method approach, as compared to both of the aforementioned popular numerical solution techniques. To assess the performance of the proposed approach, we employ the Catté-Lions-Morel-Coll model to restore noisy images, by solving the PDE with the three numerical solution schemes. For all of the benchmark images employed in our experiments, and for every level of noise applied, we observe that the best image restored by using the mimetic method is closer to the noise-free image than the best images restored by the other two methods tested. These results motivate further studies of the application of the mimetic methods to other imaging problems. Mathematical subject classification: Primary: 68U10; Secondary: 65L12.
id SBMAC-2_cc3da24892665d8916ce8a01456f7d6b
oai_identifier_str oai:scielo:S1807-03022011000300012
network_acronym_str SBMAC-2
network_name_str Computational & Applied Mathematics
repository_id_str
spelling Mimetic finite difference methods in image processingmimetic methodsimage processingdiscrete operatorsconservative methodsWe introduce the use of mimetic methods to the imaging community, for the solution of the initial-value problems ubiquitous in the machine vision and image processing and analysis fields. PDE-based image processing and analysis techniques comprise a host of applications such as noise removal and restoration, deblurring and enhancement, segmentation, edge detection, inpainting, registration, motion analysis, etc. Because of their favorable stability and efficiency properties, semi-implicit finite difference and finite element schemes have been the methods of choice (in that order of preference). We propose a new approach for the numerical solution of these problems based on mimetic methods. The mimetic discretization scheme preserves the continuum properties of the mathematical operators often encountered in the image processing and analysis equations. This is the main contributing factor to the improved performance of the mimetic method approach, as compared to both of the aforementioned popular numerical solution techniques. To assess the performance of the proposed approach, we employ the Catté-Lions-Morel-Coll model to restore noisy images, by solving the PDE with the three numerical solution schemes. For all of the benchmark images employed in our experiments, and for every level of noise applied, we observe that the best image restored by using the mimetic method is closer to the noise-free image than the best images restored by the other two methods tested. These results motivate further studies of the application of the mimetic methods to other imaging problems. Mathematical subject classification: Primary: 68U10; Secondary: 65L12.Sociedade Brasileira de Matemática Aplicada e Computacional2011-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300012Computational & Applied Mathematics v.30 n.3 2011reponame:Computational & Applied Mathematicsinstname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)instacron:SBMAC10.1590/S1807-03022011000300012info:eu-repo/semantics/openAccessBazan,C.Abouali,M.Castillo,J.Blomgren,P.eng2012-01-06T00:00:00Zoai:scielo:S1807-03022011000300012Revistahttps://www.scielo.br/j/cam/ONGhttps://old.scielo.br/oai/scielo-oai.php||sbmac@sbmac.org.br1807-03022238-3603opendoar:2012-01-06T00:00Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)false
dc.title.none.fl_str_mv Mimetic finite difference methods in image processing
title Mimetic finite difference methods in image processing
spellingShingle Mimetic finite difference methods in image processing
Bazan,C.
mimetic methods
image processing
discrete operators
conservative methods
title_short Mimetic finite difference methods in image processing
title_full Mimetic finite difference methods in image processing
title_fullStr Mimetic finite difference methods in image processing
title_full_unstemmed Mimetic finite difference methods in image processing
title_sort Mimetic finite difference methods in image processing
author Bazan,C.
author_facet Bazan,C.
Abouali,M.
Castillo,J.
Blomgren,P.
author_role author
author2 Abouali,M.
Castillo,J.
Blomgren,P.
author2_role author
author
author
dc.contributor.author.fl_str_mv Bazan,C.
Abouali,M.
Castillo,J.
Blomgren,P.
dc.subject.por.fl_str_mv mimetic methods
image processing
discrete operators
conservative methods
topic mimetic methods
image processing
discrete operators
conservative methods
description We introduce the use of mimetic methods to the imaging community, for the solution of the initial-value problems ubiquitous in the machine vision and image processing and analysis fields. PDE-based image processing and analysis techniques comprise a host of applications such as noise removal and restoration, deblurring and enhancement, segmentation, edge detection, inpainting, registration, motion analysis, etc. Because of their favorable stability and efficiency properties, semi-implicit finite difference and finite element schemes have been the methods of choice (in that order of preference). We propose a new approach for the numerical solution of these problems based on mimetic methods. The mimetic discretization scheme preserves the continuum properties of the mathematical operators often encountered in the image processing and analysis equations. This is the main contributing factor to the improved performance of the mimetic method approach, as compared to both of the aforementioned popular numerical solution techniques. To assess the performance of the proposed approach, we employ the Catté-Lions-Morel-Coll model to restore noisy images, by solving the PDE with the three numerical solution schemes. For all of the benchmark images employed in our experiments, and for every level of noise applied, we observe that the best image restored by using the mimetic method is closer to the noise-free image than the best images restored by the other two methods tested. These results motivate further studies of the application of the mimetic methods to other imaging problems. Mathematical subject classification: Primary: 68U10; Secondary: 65L12.
publishDate 2011
dc.date.none.fl_str_mv 2011-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300012
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022011000300012
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-03022011000300012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
publisher.none.fl_str_mv Sociedade Brasileira de Matemática Aplicada e Computacional
dc.source.none.fl_str_mv Computational & Applied Mathematics v.30 n.3 2011
reponame:Computational & Applied Mathematics
instname:Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron:SBMAC
instname_str Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
instacron_str SBMAC
institution SBMAC
reponame_str Computational & Applied Mathematics
collection Computational & Applied Mathematics
repository.name.fl_str_mv Computational & Applied Mathematics - Sociedade Brasileira de Matemática Aplicada e Computacional (SBMAC)
repository.mail.fl_str_mv ||sbmac@sbmac.org.br
_version_ 1754734890328260608