Analyzing the Gaver-Lewis Pareto process under an extremal perspective
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/1822/46971 |
Resumo: | Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure. |
id |
RCAP_26e396b9af04fae73939d4b5a243dba4 |
---|---|
oai_identifier_str |
oai:repositorium.sdum.uminho.pt:1822/46971 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Analyzing the Gaver-Lewis Pareto process under an extremal perspectiveExtreme value theoryAutoregressive processesExtremal indexAsymptotic tail independenceCiências Naturais::MatemáticasSocial SciencesPareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.The authors wish to thank the reviewers for their important comments that have improved this work. The first was financed by Portuguese Funds through FCT—Fundação para a Ciência e a Tecnologia within the Project UID/MAT/00013/2013 and by the research center CEMAT (Instituto Superior Técnico, Universidade de Lisboa) through the Project UID/Multi/04621/2013. The second author’s research was partially supported by the research unit UID/MAT/00212/2013.info:eu-repo/semantics/publishedVersionMDPIUniversidade do MinhoFerreira, Marta SusanaFerreira, Helena20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/46971eng2227-909110.3390/risks5030033info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:46:11Zoai:repositorium.sdum.uminho.pt:1822/46971Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:44:09.897559Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
title |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
spellingShingle |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective Ferreira, Marta Susana Extreme value theory Autoregressive processes Extremal index Asymptotic tail independence Ciências Naturais::Matemáticas Social Sciences |
title_short |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
title_full |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
title_fullStr |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
title_full_unstemmed |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
title_sort |
Analyzing the Gaver-Lewis Pareto process under an extremal perspective |
author |
Ferreira, Marta Susana |
author_facet |
Ferreira, Marta Susana Ferreira, Helena |
author_role |
author |
author2 |
Ferreira, Helena |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade do Minho |
dc.contributor.author.fl_str_mv |
Ferreira, Marta Susana Ferreira, Helena |
dc.subject.por.fl_str_mv |
Extreme value theory Autoregressive processes Extremal index Asymptotic tail independence Ciências Naturais::Matemáticas Social Sciences |
topic |
Extreme value theory Autoregressive processes Extremal index Asymptotic tail independence Ciências Naturais::Matemáticas Social Sciences |
description |
Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/1822/46971 |
url |
http://hdl.handle.net/1822/46971 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2227-9091 10.3390/risks5030033 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133001462841344 |