Analyzing the Gaver-Lewis Pareto process under an extremal perspective

Detalhes bibliográficos
Autor(a) principal: Ferreira, Marta Susana
Data de Publicação: 2017
Outros Autores: Ferreira, Helena
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/1822/46971
Resumo: Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.
id RCAP_26e396b9af04fae73939d4b5a243dba4
oai_identifier_str oai:repositorium.sdum.uminho.pt:1822/46971
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analyzing the Gaver-Lewis Pareto process under an extremal perspectiveExtreme value theoryAutoregressive processesExtremal indexAsymptotic tail independenceCiências Naturais::MatemáticasSocial SciencesPareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.The authors wish to thank the reviewers for their important comments that have improved this work. The first was financed by Portuguese Funds through FCT—Fundação para a Ciência e a Tecnologia within the Project UID/MAT/00013/2013 and by the research center CEMAT (Instituto Superior Técnico, Universidade de Lisboa) through the Project UID/Multi/04621/2013. The second author’s research was partially supported by the research unit UID/MAT/00212/2013.info:eu-repo/semantics/publishedVersionMDPIUniversidade do MinhoFerreira, Marta SusanaFerreira, Helena20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/1822/46971eng2227-909110.3390/risks5030033info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-21T12:46:11Zoai:repositorium.sdum.uminho.pt:1822/46971Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T19:44:09.897559Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analyzing the Gaver-Lewis Pareto process under an extremal perspective
title Analyzing the Gaver-Lewis Pareto process under an extremal perspective
spellingShingle Analyzing the Gaver-Lewis Pareto process under an extremal perspective
Ferreira, Marta Susana
Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
Ciências Naturais::Matemáticas
Social Sciences
title_short Analyzing the Gaver-Lewis Pareto process under an extremal perspective
title_full Analyzing the Gaver-Lewis Pareto process under an extremal perspective
title_fullStr Analyzing the Gaver-Lewis Pareto process under an extremal perspective
title_full_unstemmed Analyzing the Gaver-Lewis Pareto process under an extremal perspective
title_sort Analyzing the Gaver-Lewis Pareto process under an extremal perspective
author Ferreira, Marta Susana
author_facet Ferreira, Marta Susana
Ferreira, Helena
author_role author
author2 Ferreira, Helena
author2_role author
dc.contributor.none.fl_str_mv Universidade do Minho
dc.contributor.author.fl_str_mv Ferreira, Marta Susana
Ferreira, Helena
dc.subject.por.fl_str_mv Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
Ciências Naturais::Matemáticas
Social Sciences
topic Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
Ciências Naturais::Matemáticas
Social Sciences
description Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1822/46971
url http://hdl.handle.net/1822/46971
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2227-9091
10.3390/risks5030033
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133001462841344