Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective

Detalhes bibliográficos
Autor(a) principal: Ferreira, Marta
Data de Publicação: 2017
Outros Autores: Ferreira, Helena
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10400.6/8168
Resumo: Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.
id RCAP_44f04654d9b58b2cb5f688a853f78156
oai_identifier_str oai:ubibliorum.ubi.pt:10400.6/8168
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Analyzing the Gaver - Lewis Pareto Process under an Extremal PerspectiveExtreme value theoryAutoregressive processesExtremal indexAsymptotic tail independencePareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.uBibliorumFerreira, MartaFerreira, Helena2020-01-09T14:57:25Z20172017-01-01T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.6/8168eng10.3390/risks5030033info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-12-15T09:46:25Zoai:ubibliorum.ubi.pt:10400.6/8168Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T00:47:46.885397Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
title Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
spellingShingle Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
Ferreira, Marta
Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
title_short Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
title_full Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
title_fullStr Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
title_full_unstemmed Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
title_sort Analyzing the Gaver - Lewis Pareto Process under an Extremal Perspective
author Ferreira, Marta
author_facet Ferreira, Marta
Ferreira, Helena
author_role author
author2 Ferreira, Helena
author2_role author
dc.contributor.none.fl_str_mv uBibliorum
dc.contributor.author.fl_str_mv Ferreira, Marta
Ferreira, Helena
dc.subject.por.fl_str_mv Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
topic Extreme value theory
Autoregressive processes
Extremal index
Asymptotic tail independence
description Pareto processes are suitable to model stationary heavy-tailed data. Here, we consider the auto-regressive Gaver–Lewis Pareto Process and address a study of the tail behavior. We characterize its local and long-range dependence. We will see that consecutive observations are asymptotically tail independent, a feature that is often misevaluated by the most common extremal models and with strong relevance to the tail inference. This also reveals clustering at “penultimate” levels. Linear correlation may not exist in a heavy-tailed context and an alternative diagnostic tool will be presented. The derived properties relate to the auto-regressive parameter of the process and will provide estimators. A comparison of the proposals is conducted through simulation and an application to a real dataset illustrates the procedure.
publishDate 2017
dc.date.none.fl_str_mv 2017
2017-01-01T00:00:00Z
2020-01-09T14:57:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.6/8168
url http://hdl.handle.net/10400.6/8168
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.3390/risks5030033
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799136372804550657