Finding patterns in cardiologic diseases using a data-driven approach

Detalhes bibliográficos
Autor(a) principal: Gomes, Filipa Isabel Ribeiro
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/29148
Resumo: Globally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition.
id RCAP_281575a0a86fdfa6f11834eef5b02baa
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/29148
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Finding patterns in cardiologic diseases using a data-driven approachData scienceCardiologia -- CardiologyDoença cardiovascular -- Cardiovascular diseaseDiagnóstico -- DiagnosisAlert systemInteligência artificial -- Artificial intelligenceAnálise de dados -- Data analysisSistema de alertasGlobally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition.A nível mundial, as doenças cardiovasculares (DC) são a principal causa de morte. Foram publicadas várias diretrizes para o tratamento das DC com o objetivo de melhorar a qualidade dos cuidados e reduzir os custos. Assim, é cada vez mais importante detetar e diagnosticar precocemente as doenças cardiovasculares. Este estudo tem como objetivo construir um algoritmo que permita prever se o doente vai ultrapassar a sua frequência cardíaca. Para além disso, o objetivo foi construir um sistema de alerta que monitoriza o estado clínico do doente e, sempre que houver uma alteração, de acordo com alguns parâmetros, o médico recebe uma mensagem automaticamente. Este estudo teve como base um conjunto de dados do Hospital Santa Maria em Lisboa, obtidos através de Acordos de Prestação de Serviços Digitais desenvolvidos no âmbito do projeto FCT DSAIPA/AI/0122/2020 AIMHealth - Aplicações Móveis Baseadas em Inteligência Artificial para Resposta de Saúde Pública. O método centrado nos dados seguiu a metodologia de Mineração de Dados (MD) CRISP-DM. Com base no conjunto de dados foi possível, seguindo esta metodologia, desenvolver um algoritmo de Aprendizagem Automática (AA) que pudesse prever antecipadamente se o doente iria exceder o intervalo interquartil da sua frequência cardíaca. Verificámos que o nosso algoritmo de AA conseguiu prever problemas cardíacos em 90% dos casos e que o nosso sistema de alerta foi eficaz na deteção precoce de problemas cardíacos nos doentes. Este estudo demonstrou que a utilização de AA é uma ferramenta valiosa para detetar o agravamento do estado de saúde de um doente.2023-08-07T12:35:55Z2023-07-27T00:00:00Z2023-07-272023-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29148TID:203336160engGomes, Filipa Isabel Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T18:00:25Zoai:repositorio.iscte-iul.pt:10071/29148Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:32:00.721791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Finding patterns in cardiologic diseases using a data-driven approach
title Finding patterns in cardiologic diseases using a data-driven approach
spellingShingle Finding patterns in cardiologic diseases using a data-driven approach
Gomes, Filipa Isabel Ribeiro
Data science
Cardiologia -- Cardiology
Doença cardiovascular -- Cardiovascular disease
Diagnóstico -- Diagnosis
Alert system
Inteligência artificial -- Artificial intelligence
Análise de dados -- Data analysis
Sistema de alertas
title_short Finding patterns in cardiologic diseases using a data-driven approach
title_full Finding patterns in cardiologic diseases using a data-driven approach
title_fullStr Finding patterns in cardiologic diseases using a data-driven approach
title_full_unstemmed Finding patterns in cardiologic diseases using a data-driven approach
title_sort Finding patterns in cardiologic diseases using a data-driven approach
author Gomes, Filipa Isabel Ribeiro
author_facet Gomes, Filipa Isabel Ribeiro
author_role author
dc.contributor.author.fl_str_mv Gomes, Filipa Isabel Ribeiro
dc.subject.por.fl_str_mv Data science
Cardiologia -- Cardiology
Doença cardiovascular -- Cardiovascular disease
Diagnóstico -- Diagnosis
Alert system
Inteligência artificial -- Artificial intelligence
Análise de dados -- Data analysis
Sistema de alertas
topic Data science
Cardiologia -- Cardiology
Doença cardiovascular -- Cardiovascular disease
Diagnóstico -- Diagnosis
Alert system
Inteligência artificial -- Artificial intelligence
Análise de dados -- Data analysis
Sistema de alertas
description Globally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition.
publishDate 2023
dc.date.none.fl_str_mv 2023-08-07T12:35:55Z
2023-07-27T00:00:00Z
2023-07-27
2023-06
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/29148
TID:203336160
url http://hdl.handle.net/10071/29148
identifier_str_mv TID:203336160
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134881514520576