Finding patterns in cardiologic diseases using a data-driven approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10071/29148 |
Resumo: | Globally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition. |
id |
RCAP_281575a0a86fdfa6f11834eef5b02baa |
---|---|
oai_identifier_str |
oai:repositorio.iscte-iul.pt:10071/29148 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Finding patterns in cardiologic diseases using a data-driven approachData scienceCardiologia -- CardiologyDoença cardiovascular -- Cardiovascular diseaseDiagnóstico -- DiagnosisAlert systemInteligência artificial -- Artificial intelligenceAnálise de dados -- Data analysisSistema de alertasGlobally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition.A nível mundial, as doenças cardiovasculares (DC) são a principal causa de morte. Foram publicadas várias diretrizes para o tratamento das DC com o objetivo de melhorar a qualidade dos cuidados e reduzir os custos. Assim, é cada vez mais importante detetar e diagnosticar precocemente as doenças cardiovasculares. Este estudo tem como objetivo construir um algoritmo que permita prever se o doente vai ultrapassar a sua frequência cardíaca. Para além disso, o objetivo foi construir um sistema de alerta que monitoriza o estado clínico do doente e, sempre que houver uma alteração, de acordo com alguns parâmetros, o médico recebe uma mensagem automaticamente. Este estudo teve como base um conjunto de dados do Hospital Santa Maria em Lisboa, obtidos através de Acordos de Prestação de Serviços Digitais desenvolvidos no âmbito do projeto FCT DSAIPA/AI/0122/2020 AIMHealth - Aplicações Móveis Baseadas em Inteligência Artificial para Resposta de Saúde Pública. O método centrado nos dados seguiu a metodologia de Mineração de Dados (MD) CRISP-DM. Com base no conjunto de dados foi possível, seguindo esta metodologia, desenvolver um algoritmo de Aprendizagem Automática (AA) que pudesse prever antecipadamente se o doente iria exceder o intervalo interquartil da sua frequência cardíaca. Verificámos que o nosso algoritmo de AA conseguiu prever problemas cardíacos em 90% dos casos e que o nosso sistema de alerta foi eficaz na deteção precoce de problemas cardíacos nos doentes. Este estudo demonstrou que a utilização de AA é uma ferramenta valiosa para detetar o agravamento do estado de saúde de um doente.2023-08-07T12:35:55Z2023-07-27T00:00:00Z2023-07-272023-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10071/29148TID:203336160engGomes, Filipa Isabel Ribeiroinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T18:00:25Zoai:repositorio.iscte-iul.pt:10071/29148Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:32:00.721791Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Finding patterns in cardiologic diseases using a data-driven approach |
title |
Finding patterns in cardiologic diseases using a data-driven approach |
spellingShingle |
Finding patterns in cardiologic diseases using a data-driven approach Gomes, Filipa Isabel Ribeiro Data science Cardiologia -- Cardiology Doença cardiovascular -- Cardiovascular disease Diagnóstico -- Diagnosis Alert system Inteligência artificial -- Artificial intelligence Análise de dados -- Data analysis Sistema de alertas |
title_short |
Finding patterns in cardiologic diseases using a data-driven approach |
title_full |
Finding patterns in cardiologic diseases using a data-driven approach |
title_fullStr |
Finding patterns in cardiologic diseases using a data-driven approach |
title_full_unstemmed |
Finding patterns in cardiologic diseases using a data-driven approach |
title_sort |
Finding patterns in cardiologic diseases using a data-driven approach |
author |
Gomes, Filipa Isabel Ribeiro |
author_facet |
Gomes, Filipa Isabel Ribeiro |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gomes, Filipa Isabel Ribeiro |
dc.subject.por.fl_str_mv |
Data science Cardiologia -- Cardiology Doença cardiovascular -- Cardiovascular disease Diagnóstico -- Diagnosis Alert system Inteligência artificial -- Artificial intelligence Análise de dados -- Data analysis Sistema de alertas |
topic |
Data science Cardiologia -- Cardiology Doença cardiovascular -- Cardiovascular disease Diagnóstico -- Diagnosis Alert system Inteligência artificial -- Artificial intelligence Análise de dados -- Data analysis Sistema de alertas |
description |
Globally, cardiovascular disease (CD) is the leading cause of death. Several guidelines for the treatment of CD have been published with the aim of improving the quality of care and reducing costs. Thus, it is increasingly important to detect and diagnose cardiovascular diseases early. This study aims to build an algorithm to predict whether a patient will exceed their heart rate. In addition, the goal was to build an alert system that monitors the patient's clinical status and, whenever there is a change, according to some parameters, the doctor receives a message automatically. This study was based on a set of data from Santa Maria Hospital in Lisbon, obtained through Digital Services Agreements developed under the FCT project DSAIPA/AI/0122/2020 AIMHealth - Artificial Intelligence Based Mobile Applications for Public Health Response. The data-centric method followed the CRISP-DM Data Mining (DM) methodology. Based on the dataset it was possible, following this methodology, to develop a Machine Learning (ML) algorithm that could predict in advance whether the patient would exceed the interquartile range of their heart rate. We found that our ML algorithm was able to predict cardiac problems in 90% of the cases and that our alert system was effective in early detection of cardiac problems in patients. This study has shown that using ML is a valuable tool for detecting the worsening of a patient's health condition. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-08-07T12:35:55Z 2023-07-27T00:00:00Z 2023-07-27 2023-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10071/29148 TID:203336160 |
url |
http://hdl.handle.net/10071/29148 |
identifier_str_mv |
TID:203336160 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799134881514520576 |