Application of semi-circular double-skin facades in auditoriums in winter conditions

Bibliographic Details
Main Author: Conceição, Maria Inês
Publication Date: 2023
Other Authors: EZE, Conceicão, Lúcio, Maria Manuela Jacinto Do Rosário, Gomes, João, Awbi, Hazim
Format: Article
Language: eng
Source: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Download full: http://hdl.handle.net/10400.1/19496
Summary: The DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.
id RCAP_29ae7d958eb8551bbd7b9560b2b17870
oai_identifier_str oai:sapientia.ualg.pt:10400.1/19496
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Application of semi-circular double-skin facades in auditoriums in winter conditionsSemi-circular DSFThermal comfortIndoor air qualitySolar radiationThe DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.MDPISapientiaConceição, Maria InêsEZE, ConceicãoLúcio, Maria Manuela Jacinto Do RosárioGomes, JoãoAwbi, Hazim2023-04-28T08:53:14Z2023-03-302023-04-27T13:50:57Z2023-03-30T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/19496engInventions 8 (2): 60 (2023)2411-513410.3390/inventions8020060info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:31:58Zoai:sapientia.ualg.pt:10400.1/19496Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:09:07.431193Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Application of semi-circular double-skin facades in auditoriums in winter conditions
title Application of semi-circular double-skin facades in auditoriums in winter conditions
spellingShingle Application of semi-circular double-skin facades in auditoriums in winter conditions
Conceição, Maria Inês
Semi-circular DSF
Thermal comfort
Indoor air quality
Solar radiation
title_short Application of semi-circular double-skin facades in auditoriums in winter conditions
title_full Application of semi-circular double-skin facades in auditoriums in winter conditions
title_fullStr Application of semi-circular double-skin facades in auditoriums in winter conditions
title_full_unstemmed Application of semi-circular double-skin facades in auditoriums in winter conditions
title_sort Application of semi-circular double-skin facades in auditoriums in winter conditions
author Conceição, Maria Inês
author_facet Conceição, Maria Inês
EZE, Conceicão
Lúcio, Maria Manuela Jacinto Do Rosário
Gomes, João
Awbi, Hazim
author_role author
author2 EZE, Conceicão
Lúcio, Maria Manuela Jacinto Do Rosário
Gomes, João
Awbi, Hazim
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Sapientia
dc.contributor.author.fl_str_mv Conceição, Maria Inês
EZE, Conceicão
Lúcio, Maria Manuela Jacinto Do Rosário
Gomes, João
Awbi, Hazim
dc.subject.por.fl_str_mv Semi-circular DSF
Thermal comfort
Indoor air quality
Solar radiation
topic Semi-circular DSF
Thermal comfort
Indoor air quality
Solar radiation
description The DSF (double-skin facade) system is an important element in building design and is used in adjacent spaces to control the inlet solar radiation, heat the air, reduce energy consumption, decrease the acoustics levels, and produce photovoltaic energy, among other improvements. The DSF system can, for example, be used in winter conditions to heat the air, which is then transported to non-adjacent spaces to improve the thermal comfort level and the indoor air quality that the occupants are subjected to. Smooth DSF systems, which are a focus in the literature, are subjected to higher solar radiation levels at a specific hour of the day. The semi-circular DSF system used in this work, which was built from a group of smooth DSF systems with different orientations, guarantees the reception of the highest incident solar radiation throughout the entire day. This work presents a numerical study of a new DSF system, called the semi-circular DSF. The DSF system consists of a set of 25 smooth DSFs with different orientations, each one consisting of an outer glazed surface and an inner surface provided by the outer facade of the auditorium, both separated by an air channel. In this work, the influence of the radius of the semi-circular DSF system and the opening angle of the DSF system on the thermal response of the auditorium was analysed. Thus, six auditoriums were considered: two sets of three auditoriums with radii of 5 m and 15 m, with each of the auditoriums having a different DSF opening angle (45°, 90°, and 180°). It was found that the greater the radius of the semi-circular DSF and the opening angle of the DSF system, the greater the area of its glazed surface and, consequently, the greater the availability of solar heating power. Therefore, during the occupation period, only the set of auditoriums with the largest semi-circular DSF radius managed to present acceptable levels of thermal comfort, which were verified from mid-morning until late afternoon. As for the opening angle of the DSF system, the influence was not very significant, although slight improvements in thermal comfort were noted when the value of this angle was reduced (see Case F as an example) due to the corresponding decrease in the volume of indoor air to be heated. In all auditoriums (see Case A to Case F), it was verified that the indoor air quality was acceptable for the occupants, so the airflow rate was adequately promoted by the ventilation system.
publishDate 2023
dc.date.none.fl_str_mv 2023-04-28T08:53:14Z
2023-03-30
2023-04-27T13:50:57Z
2023-03-30T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10400.1/19496
url http://hdl.handle.net/10400.1/19496
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Inventions 8 (2): 60 (2023)
2411-5134
10.3390/inventions8020060
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799133338397573120