Development of a double Skin Facade system applied in a virtual occupied chamber
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10400.1/15408 |
Resumo: | In this study a system constituted by seven double skin facades (DSF), three equipped with venetian blinds and four not equipped with venetian blinds, applied in a virtual chamber, is developed. The project will be carried out in winter conditions, using a numerical model, in transient conditions, and based on energy and mass balance linear integral equations. The energy balance linear integral equations are used to calculate the air temperature inside the DSF and the virtual chamber, the temperature on the venetian blind, the temperature on the inner and outer glass, and the temperature distribution in the surrounding structure of the DSF and virtual chamber. These equations consider the convection, conduction, and radiation phenomena. The heat transfer by convection is calculated by natural, forced, and mixed convection, with dimensionless coefficients. In the radiative exchanges, the incident solar radiation, the absorbed solar radiation, and the transmitted solar radiation are considered. The mass balance linear integral equations are used to calculate the water mass concentration and the contaminants mass concentration. These equations consider the convection and the diffusion phenomena. In this numerical work seven cases studies and three occupation levels are simulated. In each case the influence of the ventilation airflow and the occupation level is analyzed. The total number of thermal and indoor air quality uncomfortable hours are used to evaluate the DSF performance. In accordance with the obtained results, in general, the indoor air quality is acceptable; however, when the number of occupants in the virtual chamber increases, the Predicted Mean Vote index value increases. When the airflow rate increases the total of Uncomfortable Hours decreases and, after a certain value of the airflow rate, it increases. The airflow rate associated with the minimum value of total Uncomfortable Hours increases when the number of occupants increases. The energy production decreases when the airflow increases and the production of energy is higher in DSF with venetian blinds system than in DSF without venetian blinds system. |
id |
RCAP_e2d6e2bed91d056e5413a80e80d74f6a |
---|---|
oai_identifier_str |
oai:sapientia.ualg.pt:10400.1/15408 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Development of a double Skin Facade system applied in a virtual occupied chamberDouble skin facadeVirtual chamberNumerical simulationThermal comfortIndoor air qualityIn this study a system constituted by seven double skin facades (DSF), three equipped with venetian blinds and four not equipped with venetian blinds, applied in a virtual chamber, is developed. The project will be carried out in winter conditions, using a numerical model, in transient conditions, and based on energy and mass balance linear integral equations. The energy balance linear integral equations are used to calculate the air temperature inside the DSF and the virtual chamber, the temperature on the venetian blind, the temperature on the inner and outer glass, and the temperature distribution in the surrounding structure of the DSF and virtual chamber. These equations consider the convection, conduction, and radiation phenomena. The heat transfer by convection is calculated by natural, forced, and mixed convection, with dimensionless coefficients. In the radiative exchanges, the incident solar radiation, the absorbed solar radiation, and the transmitted solar radiation are considered. The mass balance linear integral equations are used to calculate the water mass concentration and the contaminants mass concentration. These equations consider the convection and the diffusion phenomena. In this numerical work seven cases studies and three occupation levels are simulated. In each case the influence of the ventilation airflow and the occupation level is analyzed. The total number of thermal and indoor air quality uncomfortable hours are used to evaluate the DSF performance. In accordance with the obtained results, in general, the indoor air quality is acceptable; however, when the number of occupants in the virtual chamber increases, the Predicted Mean Vote index value increases. When the airflow rate increases the total of Uncomfortable Hours decreases and, after a certain value of the airflow rate, it increases. The airflow rate associated with the minimum value of total Uncomfortable Hours increases when the number of occupants increases. The energy production decreases when the airflow increases and the production of energy is higher in DSF with venetian blinds system than in DSF without venetian blinds system.SAICT-ALG/39586/2018, CRESC Algarve 2020MDPISapientiaConceição, EusébioGomes, JoãoLúcio, Maria Manuela Jacinto Do RosárioAwbi, Hazim2021-04-19T09:56:07Z2021-03-042021-03-26T14:06:27Z2021-03-04T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10400.1/15408engInventions 6 (1): 17 (2021)10.3390/inventions60100172411-5134info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-07-24T10:27:43Zoai:sapientia.ualg.pt:10400.1/15408Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T20:06:09.634495Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Development of a double Skin Facade system applied in a virtual occupied chamber |
title |
Development of a double Skin Facade system applied in a virtual occupied chamber |
spellingShingle |
Development of a double Skin Facade system applied in a virtual occupied chamber Conceição, Eusébio Double skin facade Virtual chamber Numerical simulation Thermal comfort Indoor air quality |
title_short |
Development of a double Skin Facade system applied in a virtual occupied chamber |
title_full |
Development of a double Skin Facade system applied in a virtual occupied chamber |
title_fullStr |
Development of a double Skin Facade system applied in a virtual occupied chamber |
title_full_unstemmed |
Development of a double Skin Facade system applied in a virtual occupied chamber |
title_sort |
Development of a double Skin Facade system applied in a virtual occupied chamber |
author |
Conceição, Eusébio |
author_facet |
Conceição, Eusébio Gomes, João Lúcio, Maria Manuela Jacinto Do Rosário Awbi, Hazim |
author_role |
author |
author2 |
Gomes, João Lúcio, Maria Manuela Jacinto Do Rosário Awbi, Hazim |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Sapientia |
dc.contributor.author.fl_str_mv |
Conceição, Eusébio Gomes, João Lúcio, Maria Manuela Jacinto Do Rosário Awbi, Hazim |
dc.subject.por.fl_str_mv |
Double skin facade Virtual chamber Numerical simulation Thermal comfort Indoor air quality |
topic |
Double skin facade Virtual chamber Numerical simulation Thermal comfort Indoor air quality |
description |
In this study a system constituted by seven double skin facades (DSF), three equipped with venetian blinds and four not equipped with venetian blinds, applied in a virtual chamber, is developed. The project will be carried out in winter conditions, using a numerical model, in transient conditions, and based on energy and mass balance linear integral equations. The energy balance linear integral equations are used to calculate the air temperature inside the DSF and the virtual chamber, the temperature on the venetian blind, the temperature on the inner and outer glass, and the temperature distribution in the surrounding structure of the DSF and virtual chamber. These equations consider the convection, conduction, and radiation phenomena. The heat transfer by convection is calculated by natural, forced, and mixed convection, with dimensionless coefficients. In the radiative exchanges, the incident solar radiation, the absorbed solar radiation, and the transmitted solar radiation are considered. The mass balance linear integral equations are used to calculate the water mass concentration and the contaminants mass concentration. These equations consider the convection and the diffusion phenomena. In this numerical work seven cases studies and three occupation levels are simulated. In each case the influence of the ventilation airflow and the occupation level is analyzed. The total number of thermal and indoor air quality uncomfortable hours are used to evaluate the DSF performance. In accordance with the obtained results, in general, the indoor air quality is acceptable; however, when the number of occupants in the virtual chamber increases, the Predicted Mean Vote index value increases. When the airflow rate increases the total of Uncomfortable Hours decreases and, after a certain value of the airflow rate, it increases. The airflow rate associated with the minimum value of total Uncomfortable Hours increases when the number of occupants increases. The energy production decreases when the airflow increases and the production of energy is higher in DSF with venetian blinds system than in DSF without venetian blinds system. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-19T09:56:07Z 2021-03-04 2021-03-26T14:06:27Z 2021-03-04T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10400.1/15408 |
url |
http://hdl.handle.net/10400.1/15408 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Inventions 6 (1): 17 (2021) 10.3390/inventions6010017 2411-5134 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799133302568779776 |