Method of nose stretching in Newton's problem of minimal resistance
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/32624 |
Resumo: | We consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem. |
id |
RCAP_29cb91b779c4bc46efe532daa0cc1174 |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/32624 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Method of nose stretching in Newton's problem of minimal resistanceConvex bodyNewton's problem of minimal resistanceSurface area measureBlaschke additionThe method of nose stretchingWe consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem.IOP Publishing2021-072021-07-01T00:00:00Z2022-07-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/32624eng0951-771510.1088/1361-6544/abf5c0Plakhov, Alexanderinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:41Zoai:ria.ua.pt:10773/32624Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:09.977819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Method of nose stretching in Newton's problem of minimal resistance |
title |
Method of nose stretching in Newton's problem of minimal resistance |
spellingShingle |
Method of nose stretching in Newton's problem of minimal resistance Plakhov, Alexander Convex body Newton's problem of minimal resistance Surface area measure Blaschke addition The method of nose stretching |
title_short |
Method of nose stretching in Newton's problem of minimal resistance |
title_full |
Method of nose stretching in Newton's problem of minimal resistance |
title_fullStr |
Method of nose stretching in Newton's problem of minimal resistance |
title_full_unstemmed |
Method of nose stretching in Newton's problem of minimal resistance |
title_sort |
Method of nose stretching in Newton's problem of minimal resistance |
author |
Plakhov, Alexander |
author_facet |
Plakhov, Alexander |
author_role |
author |
dc.contributor.author.fl_str_mv |
Plakhov, Alexander |
dc.subject.por.fl_str_mv |
Convex body Newton's problem of minimal resistance Surface area measure Blaschke addition The method of nose stretching |
topic |
Convex body Newton's problem of minimal resistance Surface area measure Blaschke addition The method of nose stretching |
description |
We consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07 2021-07-01T00:00:00Z 2022-07-31T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/32624 |
url |
http://hdl.handle.net/10773/32624 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
0951-7715 10.1088/1361-6544/abf5c0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/embargoedAccess |
eu_rights_str_mv |
embargoedAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137697280819200 |