Method of nose stretching in Newton's problem of minimal resistance

Detalhes bibliográficos
Autor(a) principal: Plakhov, Alexander
Data de Publicação: 2021
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/32624
Resumo: We consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem.
id RCAP_29cb91b779c4bc46efe532daa0cc1174
oai_identifier_str oai:ria.ua.pt:10773/32624
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Method of nose stretching in Newton's problem of minimal resistanceConvex bodyNewton's problem of minimal resistanceSurface area measureBlaschke additionThe method of nose stretchingWe consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem.IOP Publishing2021-072021-07-01T00:00:00Z2022-07-31T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/32624eng0951-771510.1088/1361-6544/abf5c0Plakhov, Alexanderinfo:eu-repo/semantics/embargoedAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T12:02:41Zoai:ria.ua.pt:10773/32624Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:04:09.977819Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Method of nose stretching in Newton's problem of minimal resistance
title Method of nose stretching in Newton's problem of minimal resistance
spellingShingle Method of nose stretching in Newton's problem of minimal resistance
Plakhov, Alexander
Convex body
Newton's problem of minimal resistance
Surface area measure
Blaschke addition
The method of nose stretching
title_short Method of nose stretching in Newton's problem of minimal resistance
title_full Method of nose stretching in Newton's problem of minimal resistance
title_fullStr Method of nose stretching in Newton's problem of minimal resistance
title_full_unstemmed Method of nose stretching in Newton's problem of minimal resistance
title_sort Method of nose stretching in Newton's problem of minimal resistance
author Plakhov, Alexander
author_facet Plakhov, Alexander
author_role author
dc.contributor.author.fl_str_mv Plakhov, Alexander
dc.subject.por.fl_str_mv Convex body
Newton's problem of minimal resistance
Surface area measure
Blaschke addition
The method of nose stretching
topic Convex body
Newton's problem of minimal resistance
Surface area measure
Blaschke addition
The method of nose stretching
description We consider the problem $\inf\big\{ \int\!\!\int_\Omega (1 + |\nabla u(x_1,x_2)|^2)^{-1} dx_1 dx_2 : \text{ the function } u : \Omega \to \mathbb{R} \text{ is concave and } 0 \le u(x) \le M \text{ for all } x = (x_1, x_2) \in \Omega =\{ |x| \le 1 \} \, \big\}$ (Newton's problem) and its generalizations. In the paper by Brock, Ferone, and Kawohl (1996) it is proved that if a solution $u$ is $C^2$ in an open set $\mathcal{U} \subset \Omega$ then $\det D^2u = 0$ in $\mathcal{U}$. It follows that graph$(u)\rfloor_\mathcal{U}$ does not contain extreme points of the subgraph of $u$. In this paper we prove a somewhat stronger result. Namely, there exists a solution $u$ possessing the following property. If $u$ is $C^1$ in an open set $\mathcal{U} \subset \Omega$ then graph$(u\rfloor_\mathcal{U})$ does not contain extreme points of the convex body $C_u = \{ (x,z) :\, x \in \Omega,\ 0 \le z \le u(x) \}$. As a consequence, we have $C_u = \text{\rm Conv} (\overline{\text{\rm Sing$C_u$}})$, where Sing$C_u$ denotes the set of singular points of $\partial C_u$. We prove a similar result for a generalization of Newton's problem.
publishDate 2021
dc.date.none.fl_str_mv 2021-07
2021-07-01T00:00:00Z
2022-07-31T00:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/32624
url http://hdl.handle.net/10773/32624
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0951-7715
10.1088/1361-6544/abf5c0
dc.rights.driver.fl_str_mv info:eu-repo/semantics/embargoedAccess
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137697280819200