Two-dimensional Newton's problem of minimal resistance

Detalhes bibliográficos
Autor(a) principal: Silva, C.J.
Data de Publicação: 2006
Outros Autores: Torres, D.F.M.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10773/4109
Resumo: Newton's problem of minimal resistance is one of the first problems of optimal control: it was proposed, and its solution given, by Isaac Newton in his masterful Principia Mathematica, in 1686. The problem consists of determining, in dimension three, the shape of an axis-symmetric body, with assigned radius and height, which offers minimum resistance when it is moving in a resistant medium. The problem has a very rich history and is well documented in the literature. Of course, at a first glance, one suspects that the two dimensional case should be well known. Nevertheless, we have looked into numerous references and asked at least as many experts on the problem, and we have not been able to identify a single source. Solution was always plausible to everyone who thought about the problem, and writing it down was always thought not to be worthwhile. Here we show that this is not the case: the two-dimensional problem is richer than the classical one, being, in some sense, more interesting. Novelties include: (i) while in the classical three-dimensional problem only the restricted case makes sense (without restriction on the monotonicity of admissible functions the problem does not admit a local minimum), we prove that in dimension two the unrestricted problem is also well-posed when the ratio of height versus radius of base is greater than a given quantity; (ii) while in three dimensions the (restricted) problem has a unique solution, we show that in the restricted two-dimensional problem the minimizer is not always unique - when the height of the body is less or equal than its base radius, there exists infinitely many minimizing functions.
id RCAP_c9e389389f4f741784b4e57cb727b363
oai_identifier_str oai:ria.ua.pt:10773/4109
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Two-dimensional Newton's problem of minimal resistanceCalculus of variationsDimension twoNewton's problem of minimal resistanceOptimal controlNewton's problem of minimal resistance is one of the first problems of optimal control: it was proposed, and its solution given, by Isaac Newton in his masterful Principia Mathematica, in 1686. The problem consists of determining, in dimension three, the shape of an axis-symmetric body, with assigned radius and height, which offers minimum resistance when it is moving in a resistant medium. The problem has a very rich history and is well documented in the literature. Of course, at a first glance, one suspects that the two dimensional case should be well known. Nevertheless, we have looked into numerous references and asked at least as many experts on the problem, and we have not been able to identify a single source. Solution was always plausible to everyone who thought about the problem, and writing it down was always thought not to be worthwhile. Here we show that this is not the case: the two-dimensional problem is richer than the classical one, being, in some sense, more interesting. Novelties include: (i) while in the classical three-dimensional problem only the restricted case makes sense (without restriction on the monotonicity of admissible functions the problem does not admit a local minimum), we prove that in dimension two the unrestricted problem is also well-posed when the ratio of height versus radius of base is greater than a given quantity; (ii) while in three dimensions the (restricted) problem has a unique solution, we show that in the restricted two-dimensional problem the minimizer is not always unique - when the height of the body is less or equal than its base radius, there exists infinitely many minimizing functions.Polish Academy of Sciences2011-10-11T10:54:32Z2006-01-01T00:00:00Z2006info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/4109eng0324-8569Silva, C.J.Torres, D.F.M.info:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:04:23Zoai:ria.ua.pt:10773/4109Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:42:10.655757Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Two-dimensional Newton's problem of minimal resistance
title Two-dimensional Newton's problem of minimal resistance
spellingShingle Two-dimensional Newton's problem of minimal resistance
Silva, C.J.
Calculus of variations
Dimension two
Newton's problem of minimal resistance
Optimal control
title_short Two-dimensional Newton's problem of minimal resistance
title_full Two-dimensional Newton's problem of minimal resistance
title_fullStr Two-dimensional Newton's problem of minimal resistance
title_full_unstemmed Two-dimensional Newton's problem of minimal resistance
title_sort Two-dimensional Newton's problem of minimal resistance
author Silva, C.J.
author_facet Silva, C.J.
Torres, D.F.M.
author_role author
author2 Torres, D.F.M.
author2_role author
dc.contributor.author.fl_str_mv Silva, C.J.
Torres, D.F.M.
dc.subject.por.fl_str_mv Calculus of variations
Dimension two
Newton's problem of minimal resistance
Optimal control
topic Calculus of variations
Dimension two
Newton's problem of minimal resistance
Optimal control
description Newton's problem of minimal resistance is one of the first problems of optimal control: it was proposed, and its solution given, by Isaac Newton in his masterful Principia Mathematica, in 1686. The problem consists of determining, in dimension three, the shape of an axis-symmetric body, with assigned radius and height, which offers minimum resistance when it is moving in a resistant medium. The problem has a very rich history and is well documented in the literature. Of course, at a first glance, one suspects that the two dimensional case should be well known. Nevertheless, we have looked into numerous references and asked at least as many experts on the problem, and we have not been able to identify a single source. Solution was always plausible to everyone who thought about the problem, and writing it down was always thought not to be worthwhile. Here we show that this is not the case: the two-dimensional problem is richer than the classical one, being, in some sense, more interesting. Novelties include: (i) while in the classical three-dimensional problem only the restricted case makes sense (without restriction on the monotonicity of admissible functions the problem does not admit a local minimum), we prove that in dimension two the unrestricted problem is also well-posed when the ratio of height versus radius of base is greater than a given quantity; (ii) while in three dimensions the (restricted) problem has a unique solution, we show that in the restricted two-dimensional problem the minimizer is not always unique - when the height of the body is less or equal than its base radius, there exists infinitely many minimizing functions.
publishDate 2006
dc.date.none.fl_str_mv 2006-01-01T00:00:00Z
2006
2011-10-11T10:54:32Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10773/4109
url http://hdl.handle.net/10773/4109
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 0324-8569
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Polish Academy of Sciences
publisher.none.fl_str_mv Polish Academy of Sciences
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799137469881384960