Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10362/140159 |
Resumo: | This work project intends to propose a privacy-based system to Modatta, a start-up focused on monetising users' data, eliminating the concerns of data leakage. The system consists of the following techniques: Deep Interest Network(DIN)/ Hyperbolic Embedding(HE), Generative Adversarial Network(GAN) and Federated Learning(FL), providing a recommender system and protecting the users' privacy. Data protection has been a hotly debated topic in society for many years, especially the adverse social effects caused by the misuse of user privacy by technology giants. This report will show that GAN is one of the feasible solutions to tackle these concerns. |
id |
RCAP_2d240e5a1bcf7a27135b253ad31c10b1 |
---|---|
oai_identifier_str |
oai:run.unl.pt:10362/140159 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with ganMachine learningDeep learningHyperbolic embeddingsData monetizationRecommender systemGenerative adversarial networkSynthetic dataBusiness analysisDomínio/Área Científica::Ciências Sociais::Economia e GestãoThis work project intends to propose a privacy-based system to Modatta, a start-up focused on monetising users' data, eliminating the concerns of data leakage. The system consists of the following techniques: Deep Interest Network(DIN)/ Hyperbolic Embedding(HE), Generative Adversarial Network(GAN) and Federated Learning(FL), providing a recommender system and protecting the users' privacy. Data protection has been a hotly debated topic in society for many years, especially the adverse social effects caused by the misuse of user privacy by technology giants. This report will show that GAN is one of the feasible solutions to tackle these concerns.Han, QiweiMoretti, RodrigoBasto (Modatta), Eduardo PintoRUNZe, Wu Zhen2022-06-17T14:27:56Z2022-01-212021-12-172022-01-21T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://hdl.handle.net/10362/140159TID:202997286enginfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-03-11T05:17:16Zoai:run.unl.pt:10362/140159Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T03:49:35.628987Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
title |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
spellingShingle |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan Ze, Wu Zhen Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Generative adversarial network Synthetic data Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
title_short |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
title_full |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
title_fullStr |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
title_full_unstemmed |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
title_sort |
Hyperml and deep interest network to build a recommender system for Modatta: data privacy with gan |
author |
Ze, Wu Zhen |
author_facet |
Ze, Wu Zhen |
author_role |
author |
dc.contributor.none.fl_str_mv |
Han, Qiwei Moretti, Rodrigo Basto (Modatta), Eduardo Pinto RUN |
dc.contributor.author.fl_str_mv |
Ze, Wu Zhen |
dc.subject.por.fl_str_mv |
Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Generative adversarial network Synthetic data Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
topic |
Machine learning Deep learning Hyperbolic embeddings Data monetization Recommender system Generative adversarial network Synthetic data Business analysis Domínio/Área Científica::Ciências Sociais::Economia e Gestão |
description |
This work project intends to propose a privacy-based system to Modatta, a start-up focused on monetising users' data, eliminating the concerns of data leakage. The system consists of the following techniques: Deep Interest Network(DIN)/ Hyperbolic Embedding(HE), Generative Adversarial Network(GAN) and Federated Learning(FL), providing a recommender system and protecting the users' privacy. Data protection has been a hotly debated topic in society for many years, especially the adverse social effects caused by the misuse of user privacy by technology giants. This report will show that GAN is one of the feasible solutions to tackle these concerns. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-17 2022-06-17T14:27:56Z 2022-01-21 2022-01-21T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10362/140159 TID:202997286 |
url |
http://hdl.handle.net/10362/140159 |
identifier_str_mv |
TID:202997286 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799138094532788224 |