Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
Texto Completo: | http://hdl.handle.net/10773/16492 |
Resumo: | The fractional Sturm–Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore to obtain solutions or approximation of solutions to this problem is of great importance. Here, we describe how the fractional Sturm–Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given, to illustrate the method. |
id |
RCAP_2d5e0e359e05b073676f8943a49fde3d |
---|---|
oai_identifier_str |
oai:ria.ua.pt:10773/16492 |
network_acronym_str |
RCAP |
network_name_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository_id_str |
7160 |
spelling |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problemsFractional Sturm–Liouville problemFractional calculus of variationsDiscrete fractional calculusContinuous fractional calculusThe fractional Sturm–Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore to obtain solutions or approximation of solutions to this problem is of great importance. Here, we describe how the fractional Sturm–Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given, to illustrate the method.Mathematical Sciences Publishers20172017-01-01T00:00:00Z2018-12-26T17:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfhttp://hdl.handle.net/10773/16492eng1559-395910.2140/jomms.2017.12-1Almeida, RicardoMalinowska, Agnieszka B.Morgado, M. LuísaOdzijewicz, Tatianainfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2024-02-22T11:30:34Zoai:ria.ua.pt:10773/16492Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-20T02:51:30.849915Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse |
dc.title.none.fl_str_mv |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
title |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
spellingShingle |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems Almeida, Ricardo Fractional Sturm–Liouville problem Fractional calculus of variations Discrete fractional calculus Continuous fractional calculus |
title_short |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
title_full |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
title_fullStr |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
title_full_unstemmed |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
title_sort |
Variational methods for the solution of fractional discrete/continuous Sturm-Liouville problems |
author |
Almeida, Ricardo |
author_facet |
Almeida, Ricardo Malinowska, Agnieszka B. Morgado, M. Luísa Odzijewicz, Tatiana |
author_role |
author |
author2 |
Malinowska, Agnieszka B. Morgado, M. Luísa Odzijewicz, Tatiana |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Almeida, Ricardo Malinowska, Agnieszka B. Morgado, M. Luísa Odzijewicz, Tatiana |
dc.subject.por.fl_str_mv |
Fractional Sturm–Liouville problem Fractional calculus of variations Discrete fractional calculus Continuous fractional calculus |
topic |
Fractional Sturm–Liouville problem Fractional calculus of variations Discrete fractional calculus Continuous fractional calculus |
description |
The fractional Sturm–Liouville eigenvalue problem appears in many situations, e.g., while solving anomalous diffusion equations coming from physical and engineering applications. Therefore to obtain solutions or approximation of solutions to this problem is of great importance. Here, we describe how the fractional Sturm–Liouville eigenvalue problem can be formulated as a constrained fractional variational principle and show how such formulation can be used in order to approximate the solutions. Numerical examples are given, to illustrate the method. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2017-01-01T00:00:00Z 2018-12-26T17:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10773/16492 |
url |
http://hdl.handle.net/10773/16492 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
1559-3959 10.2140/jomms.2017.12-1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
dc.source.none.fl_str_mv |
reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação instacron:RCAAP |
instname_str |
Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
instacron_str |
RCAAP |
institution |
RCAAP |
reponame_str |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
collection |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) |
repository.name.fl_str_mv |
Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação |
repository.mail.fl_str_mv |
|
_version_ |
1799137565132980224 |